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Abstract

We study empirically and theoretically the role of preferred habitat in understand-
ing the economic effects of the Federal Reserve’s quantitative easing (QE) pro-
grams. Using high-frequency identification and exploiting the structure of the pri-
mary market for U.S. Treasuries, we isolate demand shocks that are transmitted
solely through preferred habitat channels, but otherwise mimic QE shocks. We
document large “localized” yield curve effects when financial markets are disrupted.
Our calibrated model, which embeds a preferred habitat model in a New Keynesian
framework, can largely account for the observed financial effects of QE. We find
that QE is modestly stimulative for output and inflation, but alternative policy
designs can generate stronger effects.
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1 Introduction

While evaluating the first rounds of quantitative easing (QE), then-Fed chair Ben Bernanke
observed, “The problem with QE is it works in practice but it doesn’t work in theory.”
Indeed, QE was successful in reducing short- and long-term interest rates, but the mech-
anisms behind these effects are still not well-understood. Nevertheless, this theoretical
ambiguity has not stopped the Fed from continuing to utilize QE programs, both during
the onset of COVID-19, and then reversing course by implementing quantitative tighten-
ing (QT) in response to recent inflationary pressures.

Although workhorse macroeconomic models imply that Treasury demand is deter-
mined solely by economic agents’ intertemporal consumption decisions, several explana-
tions have been put forth to rationalize the workings of QE. For instance, QE could have
signaled to financial markets a commitment to keep short-term interest rates low for a
long time (forward guidance). Or, perhaps the Fed exploited financial market frictions
(limited arbitrage and market segmentation) by purchasing securities in a particular seg-
ment. Alternatively, large-scale asset purchases by the Fed could signal a poor state of
the economy, pushing interest rates down (“Delphic effect”).1 Given the paucity of QE
events, it has been difficult to provide clear empirical evidence for (and assess the relative
contributions of) the proposed channels. Moreover, QE policies have been implemented
as responses to severe macro-financial conditions, which further confounds identification
and interpretation and raises questions about the effectiveness of QT going forward.

The objective of this paper is to unbundle the effects of QE by focusing on a specific
channel: market segmentation in the form of preferred habitat, which posits that certain
investors have preferences for specific maturities. To this end, we take the following ap-
proach. First, we identify shifts in private demand for Treasuries that mimic QE, but
are independent of all other plausible channels of QE. Next, we analyze the propagation
of these demand shocks across financial markets. In particular, we assess the ability of
preferred habitat theory to rationalize the observed responses, and we confirm key pre-
dictions regarding pass-through of demand shocks in and out of financial crises. Informed
by our empirical analysis, we then develop a general equilibrium macroeconomic model
designed to study QE policies. We find that the preferred habitat channel accounts for
the bulk of the observed response to QE in financial markets. Our model suggests that the
first rounds of QE had modest stimulative effects on output and inflation, but given the
relative health of financial markets in the present period, QT alone is unlikely to be suc-
cessful in reducing inflation to target. Finally, we explore alternative QE implementations
that can help improve the design of future asset purchases.

Our analysis starts with the key insight that the mechanism through which market
segmentation and preferred habitat forces operate is not the source of Treasury quantity

1See, Campbell et al. (2012), Martin and Milas (2012) and Bhattarai and Neely (2020) for surveys.
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shocks per se, but rather how marginal investors absorb these shocks. We utilize the
primary market for Treasuries to identify demand shifts that are independent of all QE
propagation mechanisms besides preferred habitat. Although the primary market is the
venue through which the Treasury issues debt (a supply-side action), the institutional
structure of Treasury auctions has a number of desirable features for identifying demand-
side shocks. Because all of the supply information is announced by the Treasury in
advance of each auction, the release of the auction results reveal unexpected shifts in
demand alone, allowing us to rule out a host of confounding factors. By utilizing high-
frequency (intraday) changes in Treasury yields around the close of Treasury auctions, we
are able to construct a novel measure of Treasury demand shocks.

We document that demand shocks are reasonably large and persistent, with effects
on yields typically lasting for many weeks following the auction. Furthermore, the sur-
prise movements in demand are driven by institutional investors such as foreign monetary
authorities, investment funds, insurance companies and the like. We show that these
shocks are not driven by market-wide changes in expectations about inflation, output, or
other general macro-financial conditions. Therefore, variation in Treasury yields around
the release of Treasury auction results can help us to isolate the effect of idiosyncratic
purchases in specific asset segments on the level and shape of the yield curve, which is
difficult to achieve by examining only QE events. Because Treasury auctions are fre-
quent and information spans many decades, we can study state dependence in the effect
of targeted purchases of assets (e.g., crisis vs. non-crisis states), which is instrumental
for understanding how QE programs can work in normal times. Importantly, because
Treasury auctions for specific maturities are spread over time, we can identify changes in
demand for government debt of specific maturities and trace the effect of these changes
on other parts of the yield curve. In this sense, we have natural experiments which can
mimic targeted purchases of the Fed during QE programs.

We use our auction demand shocks to empirically evaluate the “localization hypothe-
sis,” a characteristic prediction of preferred habitat theory and a key input into our sub-
sequent quantitative analyses. After deriving a simple regression specification informed
by theory, we document strong evidence in favor of localized yield curve effects during
financial crisis periods (i.e., the location of the demand shock in maturity space matters
and the effects on the yield curve are larger for bonds of similar maturities). These results
imply potentially powerful effects of QE on targeted yields in crises. However, we cannot
reject the null of no localization effects during normal times, which suggests a limited use
of QE as a conventional policy tool.

Building on seminal work by Vayanos and Vila (2021), we develop a general equilibrium
model with risk-free and risky debt to rationalize the empirical responses of the yield curve
to shocks in demand for Treasury securities and to better understand the effects of QE
on financial markets and the broader macroeconomy. We calibrate the model to match
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a variety of moments for yields and macroeconomic variables as well as the responses of
yields to surprise movements in private demand during Treasury auctions in “crisis” and
“non-crisis” times. When fed a shock mimicking QE1 in size and duration, our model
generates movements in the yield curve remarkably close to those observed in the data.
This is consistent with the view that QE works mainly via market segmentation and
preferred habitat, and that the net effect of other channels is small. Our model also
allows us to study the macroeconomic effects of QE1. Given the disruption in financial
markets, our calibration implies that QE1 stimulated output and inflation by as much as
a 50-75 basis point rate cut.

Policy experiments in our model indicate that these relatively modest macroeconomic
effects are sensitive to implementation details. In particular, holding securities on the
balance sheet longer (and making this clear to markets on announcement) boosts the
stimulative power of QE significantly. The expansionary effects of QE fall precipitously
when undertaken during periods when bond markets are relatively healthy. We also show
that QE may have unintended consequences: uncertainty surrounding the Fed’s asset
purchases may lead to excess macroeconomic volatility, thus calling for policy guidance.
Finally, QE programs tilted towards risky assets (e.g., mortgage-backed securities) are
more effective in stimulating the economy, particularly when these assets are more volatile.
Our results indicate that QE should remain in policymakers’ toolkit, but must be utilized
with caution and realistic expectations. For example, while our model predicts that the
Fed’s ongoing QT program is disinflationary, the effects are similar to a 25-50 basis point
rate hike, and thus dwarfed by the current rise in inflation.

Our paper makes three primary contributions. Theoretically, we embed a financial
model of the entire term structure of interest rates for risky and safe assets within a
dynamic model of the macroeconomy and thus can provide an integrated analysis of
QE.2 This is important because previous studies of QE largely focus separately on either
financial variables or macroeconomic variables. For example, Krishnamurthy and Vissing-
Jorgensen (2012) and Chodorow-Reich (2014) study the effects of QE announcements on
financial markets, but do not quantify the macroeconomic effects of QE. Vayanos and
Vila (2021), Greenwood and Vayanos (2014), Greenwood et al. (2016), King (2019a) and
related work explore the financial market implications of preferred habitat theory, but
are silent on any potential effects on output or inflation. On the other hand, recent
developments in macroeconomic theory (e.g., Sims and Wu (2020), Gertler and Karadi
(2011), Karadi and Nakov (2020), Cúrdia and Woodford (2011), Carlstrom et al. (2017),
and Chen et al. (2012)) concentrate on aggregate variables, but are unable to capture the
rich dynamics in bond markets which we document. Moreover, many of these theories
rely on reserve requirements or moral hazard/enforcement constraints on banks as the key
channel through which QE works. In contrast, we focus on the interaction of preferred

2Ray (2019) develops additional analytical and normative results in a version of this model.
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habitat with limited risk-bearing capacity in bond markets, which we argue is a core
mechanism behind QE effects. Our quantitative model merges these literatures: we utilize
financial data and high-frequency identification to discipline our model, which we then
use to quantify the macroeconomic effects of QE.

Empirically, we develop a novel, high-frequency measure of demand shocks for Trea-
suries by exploiting the institutional structure of Treasury auctions. A well-identified
shock series is crucial for improving our understanding of many quantity-driven macro-
finance theories, and we hope our measure will be analyzed and extended in future work
in a fashion similar to the high-frequency monetary shocks pioneered by Kuttner (2001),
Bernanke and Kuttner (2005), Gürkaynak et al. (2007), and others. Our approach is
a natural complement to existing empirical approaches estimating affine term structure
models (Hamilton and Wu (2012), Kaminska and Zinna (2020)) or demand systems (Koi-
jen et al. (2021)) using lower-frequency data.

Combining the insights of our model with our high-frequency demand shocks (and
building on extensive research studying how QE purchases impacted the yield curve, such
as D’Amico and King (2013), Li and Wei (2013), Cahill et al. (2013), King (2019b)), we
provide strong empirical evidence for state-dependent (i.e., “crisis” vs. “non-crisis”) local-
ization effects in the spillovers across maturities and asset classes of surprise movements
in Treasury demand. Put differently, we use QE-like events (rather than QE directly,
in the spirit of Fieldhouse et al. (2018) and Di Maggio et al. (2020)) in order to exploit
rich cross-sectional and time-series variation to obtain sharp identification and precise
estimates of demand shock spillovers. This new finding confirms one of the characteristic
predictions of our model (and preferred habitat theory more generally), and thus our pa-
per shows that these mechanisms are crucial in understanding the Treasury market and
channels through which QE affects yields.

Our paper is related to a broad literature studying Treasury auctions, investigating
how yields move around Treasury auctions (e.g., Lou et al. (2013), Fleming and Liu
(2016)) and respond to variation in demand (e.g., Cammack (1991), Beetsma et al. (2016,
2018), Forest (2018)). However, our focus is not Treasury auctions in and of themselves;
rather, we exploit the institutional structure of the primary market for Treasuries to
better understand the mechanisms behind QE. Relative to this early important work, we
structurally link demand shocks identified from Treasury auctions to a general equilibrium
preferred habitat model.

2 Data and Institutional Details

In this section we describe the primary sources of our data and present basic statis-
tics. First, we describe the U.S. Treasury auctions for U.S. government notes and bonds
(coupon-bearing nominal securities). Second, we describe the details of the data regarding
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intraday secondary-market Treasury prices.

2.1 Primary Market for Treasury Securities

The Treasury sells newly issued securities to the public on a regular basis through auctions.
In recent years, 2-, 3-, 5- and 7-year notes are auctioned monthly. 10-year notes and 30-
year bonds are auctioned in February, May, August and November with reopenings in the
other 8 months. The frequency of auctions has changed over time. For example, 30-year
bonds were not issued between 1999 and 2006 and were issued only twice a year between
1993 and 1999; and 20-year bonds were auctioned in May 2020, the first time since 1986.

There are two types of bids: noncompetitive and competitive. Noncompetitive bidders
agree to accept the terms settled at the auction, and are typically limited to $5 million
per bidder. Competitive bidders submit the amount they would like to purchase, not
exceeding 35% of the amount offered at auction, and the price (the interest rate) at which
they would like to make the purchase.

Auction participants include primary dealers, other non-primary brokers and dealers,
investment funds (for example, pension, hedge, mutual), insurance companies, depository
institutions, foreign and international entities (governmental and private), the Federal
Reserve System Open Market Account (SOMA), and individuals. These participants
are classified into three groups: primary dealers, direct bidders, and indirect bidders.
Primary dealers (brokers and banks) trade on their account with the Federal Reserve Bank
of New York; they are required to participate in every Treasury auction, and typically
buy the largest share of auctioned debt. Direct bidders are non-primary dealers who
submit bids for their own proprietary accounts. Indirect bidders submit competitive bids
via a direct submitter, including foreign and international monetary authorities placing
bids through the Federal Reserve Bank of New York. Additionally, the Treasury divides
investors into the following classes: Investment Funds; Pension and Retirement Funds
and Insurance Companies; Depository Institutions; Individuals; Dealers and Brokers;
Foreign and International; Federal Reserve System; Other. Fleming (2007) describes the
breakdown by types and class of bidders in greater detail.

Figure 1 depicts the stages of a Treasury auction.3 First, the Treasury releases all
pertinent information regarding an upcoming auction a few days prior to the auction
date. An announcement includes the amount offered, additional security information
(e.g., maturity, CUSIP, coupon schedule), and other information describing the rules of
the auction. After the announcement, investors may submit bids up until the auction
closing time. For typical note and bond auctions, non-competitive bids may be submitted
by 12:00 p.m., while the deadline for competitive bids is 1:00 p.m.

After the auction closes, competitive bids are accepted in ascending order (in terms of
3Appendix Figure B2 presents a typical announcement of an auction and its results.
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yields) until the quantity meets the amount offered minus the amount of non-competitive
bids. Winning bidders receive the same yield as the highest accepted bid. Once the
winning bids are determined, auction results are released immediately; beginning in the
early 2000s, results are released within minutes of the close of the auction (see Garbade
and Ingber (2005)). Besides the winning yield, the Treasury announces various aggregate
statistics regarding the bidding, such as the total demand (bids tendered) for the security
and the composition of bids and winners by investor and bid type. One particularly
salient piece of information is the “bid-to-cover,” the ratio of all bids received to all bids
accepted. A few days after the close of an auction, the Treasury delivers the securities
and charges the winning bidders for payment of the security.

Data from the announcements and results of every auction since late 1979 are available
from TreasuryDirect.gov. Data regarding amounts accepted and tendered by bidder type
(primary dealer, direct, and indirect) are available starting in 2003. The Treasury provides
information regarding allotment by investor class starting in 2000.

2.2 Intraday Treasury Yields

Once a Treasury security auction is complete, the security is issued to the winning bid-
ders and the security is free to trade in the over-the-counter (OTC) secondary market.
Following the announcement of an auction but before issuance, there is a forward market
for newly auctioned Treasuries. The forward contracts mature on the same day as the
securities are issued, and hence this market is referred to as the “when-issued” market.
Our data on secondary market yields (including when-issued yields) comes from GovPX,
which provides comprehensive intraday coverage of all outstanding U.S. Treasuries for
the period 1995-2017.4 We use changes in intraday Treasury yields in order to construct
market-based measures of demand surprises occurring during Treasury auctions.5

2.3 Summary Statistics

Our analysis focuses on Treasury note and bond auctions. We exclude inflation-protected
securities (TIPS) and floating rate notes because these securities have different structural
arrangements than simple coupon-bearing nominal securities. We also exclude Treasury
bills (zero-coupon securities with maturity one year or less) because the QE programs
mainly bought long-maturity nominal U.S. government debt.

4Our online data appendix provides more information on data sources including GovPX.
5An earlier draft of this paper used Treasury futures to construct auction demand shocks. Treasury

futures provide a natural market-based measure of such shifts, but in practice movements in the secondary
market around auctions are not predictable. In addition, Treasury futures markets are less liquid and
cannot be not tied to a specific CUSIP-level bond. Thus, we construct demand shocks using secondary
market Treasury yields; but our results are robust to using futures (see Gorodnichenko and Ray (2017)).
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Panel A of Table 1 presents summary statistics for note and bond auctions from 1995-
2017, the period for which we have intraday Treasury yields (Appendix Figure B1 plots
the number and size of note and bond auctions split by maturity). Since 1995, a typical
offering of $20 billion generates more than $50 billion in demand. Primary dealers account
for the largest source of demand (bid-to-cover ratio ≈2), but other types of bidders also
account for a large fraction of auction offerings. Primary dealers purchase ≈60 percent
of auctioned Treasuries, with the rest split between investment funds and foreign buyers.
There is considerable variation in the offered amounts (standard deviation ≈$9 billion)
as well as the level and composition of demand (standard deviation for the bid-to-cover
ratio ≈0.5, and the standard deviation of bid-to-cover ratio for primary dealers is ≈0.35).

3 Quantifying Demand Shocks

This section describes our procedure to measure surprise movements in Treasury yields
around Treasury auctions and documents properties of these surprises. Our key assump-
tion is that in a small window around the release of Treasury auction results, shifts in
Treasury yields reflect unexpected changes in market beliefs about the demand for Trea-
suries with a specific maturity. Indeed, the Treasury announces an offered amount well
before an auction happens, thus fixing supply in advance of investor bidding. Hence,
between the announcement and close of the auction, Treasury yields should move only
in response to unexpected changes in demand conditions. Our high-frequency approach
isolates variation only due to unexpected shifts in demand arising from a specific auction.

3.1 Shock Construction

Let y(m)
t,pre, y

(m)
t,post be the Treasury yields before and after the close of the auction on date t

with maturity m. We measure the surprise movements in Treasury yields as:

D
(m)
t = y

(m)
t,post − y

(m)
t,pre. (1)

For all auctions, y(m)
t,pre is the last yield observed 10 minutes before the close of the auction,

while y
(m)
t,post is the first yield observed 10 minutes following the release of the auction

results. If the date t auction is a re-opening of a previously issued security, we use
secondary market yields to construct our shocks. If the date t auction is instead a newly
issued security, we use yields from the “when-issued” market. In our sample, auctions
typically close at 1:00PM, or less frequently at 11:30AM. However, the time between the
close of the auction and the release of the results is a function of how long it takes the
Treasury to compile the results. The Treasury began releasing results within minutes in
the early 2000s, but in the 1990s frequently took longer. We collect wire reports from
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Bloomberg, which gives a tight upper bound on the release time.6

Summary statistics of our constructed shock measures D(m)
t are presented in Panel B

of Table 1.7 The shock means are close to zero (and statistical tests do not reject the null
of zero means). Moreover, there is essentially no serial correlation in D

(m)
t (ρ = −0.03).

Hence, these summary statistics indicate that surprises are not systematic and do not
contain predictable movements. In our sample period, the standard deviation of D(m)

t

increases in maturity m and ranges from 1.4 basis points for 2-year maturity to 3.3 basis
points for 30-year maturity. For comparison, Chodorow-Reich (2014) reports that the
largest intraday movements in yields following a QE announcement occurred on March
18, 2009, when Treasury (5-year) yields fell by 23 basis points. Panel C presents statis-
tics separately for periods of a binding/non-binding ZLB and for expansion/recessions.
Regardless of regime, on average our demand shocks are close to zero.

To verify that these shocks are not spurious, we also report movements in Treasury
yields on non-auction days (Panel D of Table 1; for days without auctions, the same “pre”
and “post” windows are used as auctions in the same period). In all cases, the variance
of the shocks on auction dates is larger than on non-auction dates. This pattern further
suggests that surprise auction results influence secondary-market Treasury yields.

3.2 Narrative Evidence

To provide a better understanding of what forces are behind these surprise movements,
Figure 2 plots 30-year Treasury yields during two 30-year Treasury bond auctions. The
dashed vertical lines denote the close of the auction and the release of results, respec-
tively. The first auction occurred on December 9, 2010. This auction was a reopening
of previously issued 30-year bonds from the month prior. Yields are relatively stable in
the lead up to the close of the auction, but drop sharply and immediately following the
release of the the results. The Financial Times wrote:

“Large domestic financial institutions and foreign central banks were big buy-
ers at an auction of 30-year US Treasury bonds on Thursday. ‘Investors
weren’t messing around...You don’t get the opportunity to buy large amounts
of paper outside the auctions and ‘real money’ were aggressive buyers.’ ”

The second is from an auction of newly issued bonds on August 11, 2011. When-issued
yields were relatively stable prior to auction close, but after the close and release of the
auction results, yields immediately rose. The Financial Times wrote:

6Lou et al. (2013) and Fleming and Liu (2016) show there are predictable price movements in the days
and hours before and after the auction, but near the close of the auction and release of the results price
movements unpredictable. Hence, the use of small (10-minute) intraday windows is key to identifying
unanticipated demand shocks.

7Time series plots of these shocks are presented in Appendix Figure B3.
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“An auction of 30-year US Treasury bonds saw weak demand...bidders such
as pension funds, insurers and foreign governments shied away. ‘There’s not
too many ways you can slice this one, it was a very poorly bid auction.’ ”

We interpret these two examples as follows. Before the auctions closed, the market
information set consists of all the supply information, both for outstanding securities and
the amount on offer for the current 30-year auction. The 30-year Treasury yields reflect
beliefs about the expected path of short-term interest rates, inflation expectations, and
demand for long-maturity Treasury securities. After the auctions closed and the results
were released, the only update to the information set is the news regarding the bidding
that took place in the auction, which solely reflects demand for Treasury debt. The change
in the 30-year yields is a reaction to the unexpected shift in Treasury demand revealed
at the auction (of course, this shift reflects many factors, including individual investors’
beliefs about interest rates and economic fundamentals).

These articles also highlight why auctions can have important elements of price dis-
covery: when investors wish to purchase large amounts of Treasuries to meet their needs,
they may prefer to use auctions rather than make large transactions on the secondary
market. As a result, auctions reveal new information about demand for government debt
that is not already reflected in OTC secondary market trades.

3.3 Demand Determinants

The institutional structure of the primary market and narrative evidence from the financial
press suggest that D(m)

t captures unexpected shifts in the demand for Treasuries. But
because D(m)

t is an equilibrium response, it is important to establish that these shifts are
in fact related to observable measures of demand. The bid-to-cover ratio is a natural
measure, since a higher bid-to-cover indicates higher demand relative to the amount of
Treasuries offered.

The binned scatter plot in Figure 3 shows that the bid-to-cover ratio (after controlling
for its four own lags) is a strong predictor of our demand shocks. Table 2 presents formal
evidence by regressing our shocks on measures of demand reported at the auction:

D
(m)
t = α(m) + β(m)X

(m)
t + ε

(m)
t . (2)

We present estimates separately for auctions of different maturities in columns (1)-(6).
Column (7) reports results when we pool across maturities and impose that β(m) is the
same across maturities m. Consistent with our interpretation of our intraday yield changes
as a measure of unexpected demand shocks, the results show that a higher bid-to-cover
ratio predicts a larger intraday fall in Treasury yields following the close of the auction.

Our results show that the effect of typical surprise increases in demand is economically
large. For example, a one standard deviation (0.45) increase in the bid-to-cover ratio in
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a Treasury auction for 10-year notes leads to a 3.05 × 0.45 ≈ 1.4 basis point decline in
10-year Treasury yields. We can back out a simple estimate for the sensitivity of yields
as a function of the change in quantity demanded (in terms of dollars). A typical offering
amount in a 10-year Treasury note auction is between $20 and $30 billion. Hence, our
estimates imply that an increase in demand for 10-year Treasuries by $10 billion decreases
10-year yields by 3.05×

(
10
30
, 10
20

)
≈ (1.02, 1.53) basis points.

Panel B explicitly decomposes the bid-to-cover ratio responses from Panel A into “ex-
pected” and “surprise” components. For these regressions, we first estimate a univariate
AR(4) model of the bid-to-cover ratio separately for each maturity group. This filters
out predictable, low-frequency variation in demand for Treasuries in the primary market.
We then construct the fitted (expected) and residual (surprise) values of the bid-to-cover
ratio, and regress D(m)

t on these expected and surprise components. We find that the vari-
ation in our demand shocks is determined by the surprise component, and is unaffected
by expected movements.

In order to assess sensitivity of our demand shocks to changes in demand by bidder
type, Panel C reports estimates of equation (2) using the bid-to-cover ratio of indirect
bidders, direct bidders, and primary dealers. The sensitivity of surprises D(m)

t to unex-
pected demand of indirect bidders increases with maturity. For example, a unit increase
in the bid-to-cover ratio for indirect bidders decreases the yields of 2-year Treasuries by
4.7 basis points, and the yields of 30-year Treasuries by 15.8 basis points. Direct bid-
ders exhibit the same pattern, although the coefficients are smaller. The sensitivity to
changes in the bid-to-cover ratio coming from primary dealers is smaller still. When we
pool across maturities, demand of direct and especially indirect bidders generates ceteris
paribus more variation in Treasury yields than demand of primary dealers, although for
all bidder types an increase in bidder demand implies a decline in intraday yields D(m)

t .
Panel D uses additional investor allotment data from the Treasury to break down the

amount accepted by types of bidders: Investment Funds, Foreign, Dealers, and remaining
smaller investors classes (aggregated into a “Miscellaneous” category). Since the fractions
by group add up to one, we set Dealers as the leave-out category. Our estimates suggest
that as the fraction accepted for investment funds and foreign buyers increases, D(m)

t

declines. Estimates for the Miscellaneous category are generally smaller and less robust.
Our results indicate that movements in demand, proxied by the bid-to-cover ratio, are

a key determinant of D(m)
t . Furthermore, we observe that the demand from institutional

investors is important in accounting for variation in D(m)
t . We stress that our identifying

assumption only relies on observing the changes in yields immediately following the close
and release of auction results. Our empirical approach does not require a measure of
the unanticipated movement in quantity demanded. Hence, our empirical analysis in the
remainder of the paper only relies on our constructed measure D(m)

t .
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3.4 Co-movement Across Markets

We now turn to analyzing how our demand shocks for Treasuries propagate across other
financial markets. We measure the impact of demand shocks on other assets by estimating
univariate regressions of the form

yt = γ + ϕDt + ut, (3)

where yt is the change in the price or yield of some asset on auction date t and Dt is our
auction demand shock. We pool across all auction maturities to simplify presentation,
but our results are robust to estimating equation (3) separately by maturity groups.

Where available, we use intraday changes measured in the same window as our shocks.
We also examine daily changes, both due to data limitations for some series and because
daily changes may pick up responses that do not occur immediately. A strong relationship
between Dt and yt indicates either that Dt and yt have a common determinant (e.g.,
changes in inflation expectations alter the behavior of bids in Treasury auctions and
change prices of inflation swaps) or that there is a propagation channel from Dt to yt

(e.g., higher revealed demand for Treasuries results in repricing of other debt securities).
Panel A of Table 3 reports results for debt markets. The dependent variable in the

first row is the intraday change in the price (co-moves negatively with the yield) of the
Exchange Traded Fund (ETF) “LQD,” the iShares iBoxx $ Investment Grade Corporate
Bond tracking investment grade corporate bonds. The estimated coefficient ϕ̂ is inter-
preted as the impact in log points of a one basis point increase in Dt. We observe a strong
reaction to the Treasury demand shock, accounting for more than 50 percent of variation
observed in corporate bond ETF prices during the short windows around the close and
release of the Treasury auction results. The second row reports the results using “HYG,”
the iShares iBoxx $ High Yield Corporate Bond ETF tracking high yield corporate bonds.
Although the sign of the estimated coefficient is as expected, the pass-through from our
demand shocks to high yield corporate bonds is weaker than that of investment grade
bonds. The estimated coefficient is not statistically significant, and the magnitude is
smaller than for investment grade debt by a factor of ten. Moreover, the R2 is much
lower, suggesting that our demand shocks account for only 1 percent of the observed vari-
ation in high yield corporate bond ETF prices during these intraday periods. The next
two rows examine pass-through to mortgage rates, as measured by the ETFs “MBB” and
“VMBS” (from iShares and Vanguard respectively; both ETFs track investment-grade
mortgage-backed pass-through securities guaranteed by U.S. government agencies). Sim-
ilar to our findings for investment-grade corporate debt, we find economically large and
statistically significant pass-through of demand shocks to mortgage borrowing rates. We
also find relatively high R2s of 34% and 13%, respectively.

The next rows repeat the above analysis using daily measures of corporate bond yields,
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as measured by Moody’s Aaa, Moody’s Baa, and Bank of America’s C corporate yield
indices. Consistent with the intraday results, our demand shocks have a strong effect
on safe (Aaa) corporate bonds. Moreover, the pass-through of our demand shocks to
corporate bond yields is nearly one-to-one. However, using daily rather than intraday
changes as the dependent variable leads to a decline in R2, which underscores the benefits
of using intraday data. While our demand shocks still have large effects on moderately
safe debt (Baa), there appears to be much smaller transmission to highly risky corporate
debt (C), consistent with our intraday findings.

Secondary market yields react not only strongly, but also persistently. Figure 4 plots
the contemporaneous reaction of 10-year Treasury spot rates (top panel) and the Aaa
corporate bond yields (bottom panel) to our shocks Dt, as well as the reactions up to
60 days in the future. The reaction remains strongly statistically significant over three
weeks later, while the point estimate is quite stable even 2 months later. To provide a
perspective on the magnitude of this persistence, Figure 4 also plots the change in yields
following the QE1 announcement on March 18, 2009 (normalized such that the change on
impact is equal to 1). Consistent with Wright (2012) and Greenlaw et al. (2018), yields
had returned to roughly their starting point within a few months.

One may be concerned that these reactions in the bond market are driven by some
omitted factor, rather than idiosyncratic changes in institutional investors’ demand for
Treasuries. Our high-frequency identification goes a long way towards assuaging this
concern, but it is still possible that our demand shocks reflect systematic changes in
bidders’ expectations of macroeconomic or financial fundamentals. This is an issue for
our interpretation if two conditions hold: (i) this information was not already reflected
in market prices, and instead is only revealed at the auction; (ii) the market as whole
updates their beliefs about fundamentals by observing the results of the auction. If this
“information factor” drives the bond market reactions we observe, we should find strong
co-movement between Dt and indicators capturing beliefs about current or future states
of the economy and financial markets. The “information factor” can take any number of
forms, so it is difficult to conclusively rule out this channel; we focus on a battery of key
indicators to assess the quantitative significance of this alternative explanation.

Panel B of Table 3 reports estimates for the response of equities to our demand shocks.
Rows 1 and 2 report the results for the intraday change in ETFs tracking the S&P 500 and
the Russell 2000 indices. Rows 3 and 4 are for the daily changes in these indices. Although
the estimated slope is generally positive, the estimate is typically insignificant. Moreover,
the quantitative importance is small, as the auction demand shocks account for a trivial
share of variation in equities. Thus, there is little evidence on average for a common factor
driving Treasury and equity prices during small windows around the release of auction
results, or for strong propagation of our demand shocks to equity prices.

Panel C of Table 3 presents results for a wider array of assets. The dependent variable
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in row 1 is the intraday change in the ETF “GLD,” which tracks the price of Gold
Bullion. Row 2 reports results for the daily change in the S&P Total Commodity Index.
For the Commodity Index we do not find a significant correlation with Dt. For Gold,
while the relationship is statistically significant, the R2 is very low. Rows 3 and 4 use
the daily change in inflation expectations implied by inflation swaps at the 10- and 2-year
horizons. Our demand shocks are not associated with a significant comovement in inflation
expectations. Row 5 uses the daily change in the 3-month USD LIBOR-Overnight Index
Swap spread (a common measure of credit risk in the banking sector). Rows 6 and 7 use
daily changes in two CDS indices from Credit Market Analysis that track the automotive
industry (a highly cyclical industry) and banks (a proxy for the financial sector). These
three measures proxy for expectations about future output and market conditions. Our
demand shocks have no tangible relationship with these measures, consistent with our
interpretation that the shocks do not capture superior information of Treasury auction
bidders about future recessions and the like. Finally, row 8 documents that Dt shocks
are not associated with the VIX (a measure of market perceptions of future volatility).
In short, these null results suggest that our demand shocks are not driven by changes in
expectations regarding inflation, output, liquidity, default risk, or volatility.

As a final test, Panel D of Table 3 reports results with expected federal funds rates,
which are derived from federal funds futures contracts. We view this as a “catch-all”
test of the “information factor” story: if our demand shocks reflect changes in market
expectations of fundamentals, then the market should also expect a Fed response (to
the extent these fundamentals matter for the macroeconomy). We find that our demand
shocks are not associated with changes in expected federal funds rates: the estimated
coefficients on our demand shocks are very close to zero in these specifications, and demand
shocks explain virtually none of the variation in federal funds futures in our sample.8

The results of Tables 2 and 3 allow for some broad observations. First, given our high-
frequency approach and the institutional structure of Treasury auctions, our constructed
shocks are likely only driven by new information regarding the demand side of the market.
Second, these shifts are largely driven by shifts in the demand arising from institutional
investors. Third, these demand shocks from the primary market for Treasuries propagate
to private borrowing rates. We do not observe the underlying sources of demand shocks,
and indeed it is likely driven by a host of factors, including shifts in a given investor’s
idiosyncratic beliefs about the macroeconomy. However, these demand shifts are not
driven by systematic or market-wide shifts in macroeconomic expectations (e.g., flight to
quality or inflation expectations) that may move demand for Treasuries at all maturities.

8We plot rolling regressions for select asset prices in Appendix Figure B4. Appendix Figure B5 plots
rolling regressions for h-month ahead federal funds futures h up to 12 months.
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4 Channels of Treasury Demand Shocks

The results of Section 3 show that our shock series offer useful variation to study the trans-
mission of Treasury demand shocks. However, as discussed above we cannot interpret Dt

as “structural” shocks, since these intraday yield changes are equilibrium outcomes of
the underlying (imperfectly observed) shifts in demand. Moreover, our end goal is to
make sense of the transmission of QE, both to asset prices and to the broader macroe-
conomy. Thus, in order to make more progress understanding shock transmission along
these dimensions, we need to develop a theoretical framework with meaningful interac-
tions between financial markets and the macroeconomy. This will allow us to be precise
about the transmission mechanisms of demand shocks, as well as help us extrapolate from
private shocks observed at auctions to large scale asset purchases (or sales). This section
develops such a model, derives key predictions regarding the transmission of shocks, and
develops empirical tests which can be applied using our shock measures Dt.

4.1 Overview: Agents and Financial Assets

The financial block of our model builds on Vayanos and Vila (2021), extended to allow
for both riskless and risky assets. Formally, we assume two sets of assets: riskless and
risky zero coupon bonds with maturity τ ∈ (0, T ). A τ -maturity riskless bond has price
P

(τ)
t and pays $1 at maturity with certainty in period t + τ . A risky τ -maturity bond

has price P̃ (τ)
t and instead pays Dt+τ ≡ edt+τ at maturity in period t + τ , where Dt is a

stochastic process. We will assume that both sets of assets are in zero net supply, but for
completeness we denote the supply of assets by S(τ)

t and S̃
(τ)
t , respectively.

As in Vayanos and Vila (2021), financial assets are traded between two sets of investors:
arbitrageurs and preferred habitat funds. The key idea is the existence of “clientèle”
investors who have idiosyncratic demand (“preferred habitat”) for specific assets and
maturities. For example, pension funds can have a preference for long-maturity assets to
better match the maturity structure of pension liabilities. The other side of the market are
risk-averse arbitrageurs such as hedge funds and dealers, who smooth out these preferred-
habitat demand shocks.

The real side of our model is largely built on a standard New Keynesian framework.
A representative household consumes and supplies labor to firms producing differentiated
goods while facing pricing frictions. As we show, the equilibrium aggregate dynamics
will depend on two familiar equations: an IS curve which determines the dynamics of
the output gap xt, and a Phillips curve which determines the dynamics of inflation πt.
The links between the financial and the macroeconomic blocks of our model are two-
fold. First, the central bank sets the policy rate it in reaction to aggregate fluctuations.
In equilibrium, it will be the return on a riskless bond as maturity τ → 0; therefore,
aggregate fluctuations will result in changes in asset prices. Second, we depart from the
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usual New Keynesian setup and assume that households cannot access financial markets
directly, but instead must borrow through the preferred habitat funds. Through the
household Euler equation, output in equilibrium will depend on a weighted average of
the returns on both short- and long-term assets, rather than only on the policy rate.
Therefore, asset price movements will lead to changes in macroeconomic conditions. Our
model formalizes this intuition, and characterizes the general equilibrium solution. For
ease of exposition, we summarize the model without aggregate demand and supply shocks,
but these are included in our quantitative exercises in Section 5. We stress that our aim
is to develop a tractable model, and discuss the simplifying assumptions necessary for our
model.
Households: The representative household in our model chooses consumption bundle
Ct and labor Nt given nominal wealth At in order to maximize lifetime discounted utility.
The household faces nominal wage Wt and aggregate price index Pt. Our point of depar-
ture from a textbook New Keynesian model is that households can only invest with the
preferred habitat funds, and allocate a fixed fraction of their wealth across these funds.
The household problem is given by

maxE0

∫ ∞

0

e−ρt

(
C1−ς
t

1− ς
− N1+ψ

t

1 + ψ

)
dt (4)

s.t. dAt = [WtNt − PtCt] dt+ At

∫ T

0

(
η(τ)

dP
(τ)
t

P
(τ)
t

+ η̃(τ)
dP̃

(τ)

t

P̃
(τ)
t

)
dτ + dF t , (5)

and A0 given. The parameter ψ is the Frisch elasticity of labor supply, and the parameter
ρ is the household discount factor. The term dF t captures all (flow) nominal transfers
to the household. Households therefore borrow or lend their wealth At at an “effective”
borrowing rate (rather than the short-term policy rate), given by the the integral term
in the household budget constraint. The weight functions satisfy

∫ T
0
(η(τ) + η̃(τ)) dτ = 1.

Thus, household borrowing depends on a weighted average of the returns across the term
structure and asset types. Denote the drift of the effective borrowing rate by

r̂t ≡ Et

∫ T

0

(
η(τ)

dP
(τ)
t

P
(τ)
t

+ η̃(τ)
dP̃

(τ)

t

P̃
(τ)
t

)
dτ , (6)

which is endogenous but taken as given by households.
We think of the weighting functions η(τ), η̃(τ) as capturing a type of preferred habi-

tat on the part of households (for instance, due to demographics such as age) without
explicitly introducing heterogeneous households. This also captures imperfect access to fi-
nancial markets, as households typically do not directly buy and sell financial assets such
as corporate bonds; instead, investments are done through pension funds and mutual
funds, that tend to allocate their portfolio using fixed weights and rebalance sluggishly
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(e.g., Koijen and Yogo (2019), Koijen and Yogo (2022), Bretscher et al. (2022), Peng and
Wang (2022)). Our key assumption is that the weighting functions can be taken as a
primitive of the model, and do not respond endogenously to aggregate fluctuations. This
strong assumption permits a tractable solution of the model and keeps the macroeconomic
dynamics as close as possible to a standard New Keynesian model, while still allowing
fluctuations in long-term borrowing rates to affect household decisions.

Firms: The production block of the model is standard. Intermediate goods are produced
by monopolistically competitive firms indexed by j ∈ [0, 1]. Each firm hires workers and
produces using linear technology Yj,t = Nj,t. Firms face Rotemberg pricing frictions when
choosing prices, and must pay a cost Θ(πj,t) ≡ θ

2
π2
j,tPtYt, where dP j,t

Pj,t
= πj,t dt is the

inflation rate of firm j. Firms are owned by households and hence maximize expected
real profits discounted using the household real stochastic discount factor e−ρtQt. The
firm problem is therefore given by

maxE0

∫ ∞

0

e−ρtQt
Πj,t

Pt
dt , where Πj,t = Pj,tYj,t −WtNj,t −Θ(πj,t).

Intermediate goods are sold to competitive final goods producers with demand elasticity
ϵ, which imply the usual demand and price index for differentiated goods (see e.g., Gali

(2015)): Yj,t =
(
Pj,t

Pt

)−ϵ
Yt where the price index Pt =

(∫ 1

0
P 1−ϵ
j,t

) 1
1−ϵ .

Arbitrageurs: Arbitrageurs have mean-variance preferences and allocate their wealth
Wt to holdings X(τ)

t , X̃
(τ)
t across τ riskless and risky bonds, respectively. They solve

maxEt dW t −
a

2
V art dW t (7)

s.t. dW t = Wtit dt+

∫ T

0

X
(τ)
t

(
dP

(τ)
t

P
(τ)
t

− it dt

)
+ X̃

(τ)
t

(
dP̃

(τ)

t

P̃
(τ)
t

− it dt

)
dτ , (8)

where the parameter a governs the risk-return trade-off that arbitrageurs face. This
parameter can be taken literally as a risk aversion parameter, or more generally can
be thought of as a proxy for factors that lead to the imperfect risk-bearing capacity of
arbitrageurs. Arbitrageurs transfer all profits or losses to the household each period.
Taking a as time-invariant is important for tractability; however, we might expect a to
increase in periods of financial distress. We analyze how the predictions of the model
depend on the risk-bearing capacity of arbitrageurs.9

Preferred Habitat Funds: On the other side of the market is a continuum of habitat
investors, who specialize in (riskless and risky) bonds of specific maturities. We follow
Vayanos and Vila (2021) and assume that these investors respond to prices through the

9He and Krishnamurthy (2013), Kyle and Xiong (2001) and others show how risk aversion can be
endogenously higher in times of crises.
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following demand curves:

Z
(τ)
t = −α(τ) logP (τ)

t − βt(τ), Z̃
(τ)
t = −α̃(τ) log P̃ (τ)

t − β̃t(τ). (9)

The functions α(τ), α̃(τ) are the semi-elasticities of a τ -habitat investor’s demand for
riskless and risky assets, respectively. The time-varying demand intercept is given by
βt(τ), β̃t(τ), where we assume a factor structure such that

βt(τ) =
K∑
k=1

θk(τ)βkt − ζ(τ), β̃t(τ) =
K̃∑
k=1

θ̃k(τ)β̃kt − ζ̃(τ). (10)

The functions θk(τ), θ̃k(τ) govern how demand factors βkt , β̃kt lead to changes in demand
from τ -habitat investors. In general, there are no restrictions on the dynamics of the
demand factors (up to linearizing). For the quantitative analysis in Section 5, we assume
that the habitat demand factors are independent from one another, but may respond to
the short rate (as in King (2019a)). Hence, for each demand factor we have

dβkt = −
(
κkββ

k
t + ϕki,βit

)
dt+ σkβ dBβk,t , (11)

where the parameters κkβ, ϕki,β, and σkβ govern the mean-reversion, response to short rates,
and volatility of each demand factor, respectively (and with analogous parameterization
and dynamics for demand factors β̃kt ).

The τ -maturity riskless and risky funds have wealth W (τ)
t and W̃ (τ)

t . In order to fund
their positions in their respective asset classes, the fund receives investment from the
household sector based on the weights η(τ), η̃(τ). Any remaining wealth is invested at the
short rate. The budget constraint of a τ -maturity riskless fund is therefore

dW
(τ)
t = Z

(τ)
t

dP
(τ)
t

P
(τ)
t

+
[
W

(τ)
t − Z

(τ)
t + η(τ)At

]
it dt− η(τ)At

dP
(τ)
t

P (τ)
,

and the risky fund faces an analogous budget constraint. Each preferred habitat fund also
transfers profits or losses to the household each period.

Interest Rate and Payoff Processes: To close the model, we need to specify how the
instantaneous interest rate it and the payoff process dt is determined. We assume the
central bank sets the nominal interest rate it according to the following policy rule:

dit = −κi(it − ϕππt − ϕxxt − i∗) dt+ σi dBi,t , (12)

where the response of the policy rate to inflation and the output gap are governed by
ϕπ, ϕx, κi is a mean-reversion parameter, and i∗ is the central bank’s target policy rate.
Note that if κi → ∞, we recover a standard Taylor rule.
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Finally, because risky assets are in zero net supply (S̃(τ)
t = 0), they can be interpreted

as synthetic securities which are created by the financial sector (since arbitrageurs and
preferred-habitat funds take non-zero positions in risky assets across all maturities). We
assume that the payoff processes for these synthetic securities evolves according to

ddt = −κd (dt − ψxxt − ψππt − d∗) dt+ σd dBd,t . (13)

This reduced-form approach to modelling payoffs of risky assets allows us to capture salient
features of how private borrowing rates fluctuate over the business cycle. The process is
mean-reverting (with inertia κd) and may depend on movements in output and inflation
through parameters ψx, ψπ (which are primitives of the model). Stepping outside of the
model, assets besides financial institution securities influence the borrowing decisions of
the household sector. In reality, this also includes risky private bonds, mortgage debt,
equities, and a host of other assets. Rather than complicate the model by specifying a
corporate structure for firms, we collapse all of these sources of payoff risk into a single
process Dt ≡ edt , which we allow to respond in a flexible manner to aggregate dynamics.10

4.2 Equilibrium

The household and firm problems are highly similar to a textbook New Keynesian model;
detailed derivations can be found in Appendix C. The optimizing behavior of these agents
and market clearing give rise to a Phillips curve and IS curve for inflation and the output
gap πt, xt, where the output gap is the deviation of output from the “natural” level that
would prevail in the absence of nominal rigidities (θ = 0). The only modification to
the standard (linearized) New Keynesian dynamics is that the effective borrowing rate r̂t
replaces the policy rate it. We have

Et dπt = (ρπt − δxt) dt , (14)

Et dxt = (r̂t − πt − r̄) dt , (15)

where the model is linearized around a zero inflation, zero output gap steady state. The
composite parameter δ = (ϵ−1)(1+ψ)

θ
measures the degree of price rigidity in aggregate and

r̄ is the “natural” borrowing rate.
We collect the state variables, jump variables, and Brownian terms into vectors yt =[

it dt . . . βkt . . .
]⊤

, xt =
[
πt xt

]⊤
, and Bt =

[
Bi,t Bd,t . . . Bβk,t . . .

]⊤
, respec-

10Our results are not sensitive to this precise microfoundation of the payoff process. We could have
chosen a formulation whereby the payoff process Dt captures claims on a portion of firm profits not
paid directly and immediately to households. Under the zero net supply assumption and with the payoff
process given by equation (13), the macroeconomic dynamics of the model are identical. Although this
formulation brings the interpretation of Dt closer to corporate bonds, it does not explicitly model the
financing frictions leading to this distribution of profits (and our model does not feature firm investment).
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tively. The following Lemma describes the aggregate dynamics of the model, taking as
given the effective borrowing rate. All proofs are in Appendix A.

Lemma 1 (Aggregate Dynamics). Suppose the effective borrowing rate drift is given by

r̂t = Â⊤yt + Ĉ. (16)

Then the rational expectations equilibrium is given by

dyt = −Γ (yt − ȳ) dt+ σ dBt , (17)

xt − x̄ = Ω (yt − ȳ) , (18)

where the matrices Γ,Ω are a function of the eigendecomposition of the linearized dynam-
ics of the model (and therefore functions of Â).

If Â = ei, the vector which “selects” the policy rate e⊤i yt = it, then the effective
borrowing rate responds one-for-one with the policy rate it and the aggregate dynamics
of the model reduce to a standard New Keynesian model.11

Next, we turn to characterizing the behavior of asset prices. We focus on a solution
to the model in which (log) asset prices are affine functions of the state variables, given
by (endogenous) coefficient functions:

− logP
(τ)
t = A(τ)⊤yt + C(τ), − log P̃

(τ)
t = Ã(τ)⊤yt + C̃(τ). (19)

Lemma 2 (Asset Prices). Suppose that the state variables yt evolve according to equation
(17). Then the affine coefficients in equation (19) are given by

A(τ) =
[
I− e−Mτ

]
M−1ei, Ã(τ) =

[
I− e−Mτ

]
M−1ei − e−Mτed. (20)

where ei, ed are vectors such that e⊤i yt = it and e⊤d yt = dt. The matrix M solves the fixed
point problem:

M = Γ⊤ − a

∫ T

0

[−α(τ)A(τ) +Θ(τ)]A(τ)⊤

+
[
−α̃(τ)Ã(τ) + Θ̃(τ)

]
Ã(τ)⊤ dτ σσ⊤,

(21)

where Θ(τ), Θ̃(τ) stack the habitat demand functions θk(τ), θ̃k(τ) into vectors.

The matrix M can be thought of as the risk-adjusted dynamics of the state. Note
11In this case, the determinacy conditions are the standard ones; in particular, the central bank can

ensure determinacy when the response to inflation ϕπ > 1. However, in general Â ̸= ei and the deter-
minacy conditions are more complicated. In our quantitative exercises, we verify that these determinacy
conditions are satisfied numerically.
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that when arbitrageurs are risk-neutral (a = 0), we have M = Γ⊤. However, when a ̸= 0,
M appears on both sides of equation (21) (through the affine coefficients A(τ), Ã(τ)).

With the results in Lemmas 1 and 2, we can characterize the equilibrium of the model.

Proposition 1 (Existence and Uniqueness). An affine equilibrium is one in which the
state and jump variables evolve according to equations (17) and (18), and asset prices are
determined by the solution to the expressions (20) and (21). In this case, the effective
borrowing rate is given by equation (16), where Â solves the fixed point problem

Â = ei +
(
Γ⊤ −M

) ∫ T

0

[
η(τ)A(τ) + η̃(τ)Ã(τ)

]
dτ . (22)

In a neighborhood of risk-neutrality (a ≈ 0), the equilibrium exists and is (locally) unique.

Note that the dynamics matrix of the state Γ depends on the effective borrowing rate
coefficients Â, which itself is a function of the risk-adjusted dynamics matrix M. Thus,
equilibrium is determined as a fixed point that produces asset price dynamics consistent
with equilibrium dynamics of the macroeconomy and vice versa. In general, an affine
equilibrium of this type may not exist, or there may be multiple solutions to this fixed
point problem. However, when a = 0, the model reduces to a standard New Keynesian
model. The result in Proposition 1 shows that this equilibrium persists and is locally
unique as we depart from risk neutrality. We make use of this insight in our numerical
continuation solution algorithm, described in Appendix D.1.

4.3 Localization Hypothesis and Regression Specification

Our model makes precise the channels through which QE may have financial and macroe-
conomic effects. The immediate and direct effect of a QE purchase shock is a reduction
in the amount of assets held by arbitrageurs through market clearing (a decline in X

(τ)
t

or X̃(τ)
t in equation (8), depending on the type of assets purchased during QE). If arbi-

trageurs are risk-neutral (a = 0), we recover a typical neutrality result: QE changes the
arbitrageurs’ portfolio, but not asset prices (and thus has no affect on real activity).

On the other hand, when arbitrageurs are risk-averse (a > 0), the change in arbi-
trageurs’ portfolio implies changes in risk exposure, which is priced. We can broadly dis-
tinguish between three main sources of risk: duration or short-rate risk (from fluctuations
in it); payoff risk (from fluctuations in dt); and habitat demand risk (from fluctuations in
demand factors βkt ). By reducing arbitrageur exposure to these sources of risk, in equilib-
rium QE reduces the risk compensation arbitrageurs require, which manifests as a decline
in expected returns. As a result, the household effective borrowing rate r̂t falls, which
through the intertemporal decisions of the household leads to lower savings and a jump
in consumption, and from the pricing decisions of firms leads to an increase in inflation.
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However, the precise mapping from a QE shock (or private demand shocks) to the
repricing of risk depends qualitatively on the risk-bearing capacity of arbitrageurs. One
of the characteristic predictions of our model (and preferred habitat theory more generally,
as discussed in Vayanos and Vila (2021)), is the localization hypothesis. When arbitrageur
risk-bearing capacity is high, Treasury demand shocks have global effects on the yield
curve. That is, the relative response of the interest rates across the yield curve does not
depend on where in maturity space the demand shock occurs. However, as arbitrageur
risk-bearing capacity declines, the spillovers of demand shocks become more localized.
That is, the relative response of interest rates becomes more concentrated on parts of the
yield curve that are closer in maturity space to where the demand shock occurs.

Intuitively, when arbitrageurs are nearly risk-neutral, macroeconomic fundamentals
affecting the path of the short rate (duration risk) are the dominant factor in determining
of the term structure of interest rates. Hence, when arbitrageurs hold bonds, short-
rate fluctuations are their main source of risk. Demand shocks that re-allocate bonds
away from arbitrageurs reduce their exposure to short-rate risk, and hence decrease the
compensation arbitrageurs require to hold bonds. Since all bonds are sensitive to short-
rate risk, any such demand shock will push down yields of all bonds. Importantly, this
mechanism is independent of the location (in maturity space) of the demand shock.

As arbitrageur risk aversion increases, habitat demand shocks become more prominent
as additional sources of risk. Arbitrageurs try to limit their exposure to these sources of
risk, leading to less propagation from the location of the demand shock to other parts
of the term structure. Arbitrageurs become less willing to integrate bond markets across
maturities, and hence the response of the yield curve becomes more localized around the
location (in maturity space) of a given demand shock.

In order to formalize and derive an empirical test of the localization hypothesis, con-
sider a version of the model with the following Treasury demand factors: a “short” ma-
turity factor βst and “long” maturity factor βℓt such that∫ T

0

θs(τ) dτ =

∫ T

0

θℓ(τ) dτ , ∃τ ′ : θs(τ) < θℓ(τ) ⇐⇒ τ > τ ′. (23)

That is, the factors have the same overall magnitude across maturities, but the short
factor is more concentrated in bonds of short maturities relative to the long factor. This
assumption does not imply the long factor βℓt only affects demand for long maturities;
indeed, changes in βℓt will shift demand for bonds of all maturities τ such that θℓ(τ) ̸= 0.
In other words, we allow for correlated changes in demand across the term structure
because both factors directly move demand for both short- and long-maturity bonds. We
only require that, relative to the short factor, the long factor has a larger direct effect on
demand for bonds with long maturities.

In this context, the localization hypothesis involves the differential responses of the
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entire yield curve to movements in the short and long demand factors. We can formally
state a version of the localization hypothesis as follows. When arbitrageur risk-bearing
capacity is high (a ≈ 0), the relative response of the yield curve is the same for both
factors. On the other hand, when risk-bearing capacity is low (a ≫ 0), then long de-
mand shocks have relatively larger effects on long-maturity yields and vice versa for short
demand shocks. This logic implies:

if a ≈ 0 :
∂y

(τ)
t

/
∂βst

∂y
(τ∗)
t

/
∂βst

≈
∂y

(τ)
t

/
∂βℓt

∂y
(τ∗)
t

/
∂βℓt

, (24)

if a≫ 0 : τ > τ ∗ ⇐⇒
∂y

(τ)
t

/
∂βst

∂y
(τ∗)
t

/
∂βst

<
∂y

(τ)
t

/
∂βℓt

∂y
(τ∗)
t

/
∂βℓt

, (25)

where τ ∗ is some arbitrary “baseline” maturity (and unrelated to τ) and ∂y
(τ)
t

/
∂βkt is the

response of τ -maturity yields to the demand shock k ∈ {s, ℓ}.12 Hence, these expression
make statements about the movements of the yield curve to short and long demand shocks,
relative to movements in some fixed maturity τ ∗. Specifically, equation (24) states that
even if θk(τ) ̸= θk(τ ∗) (i.e., direct responses are different across maturities for a given
factor) and θs(τ) ̸= θℓ(τ) (i.e., direct responses for a given maturity are different across
factors), arbitrageurs with low risk aversion (a ≈ 0) ensure that the equilibrium scaled
responses of yields are approximately the same for short and long factors. In contrast,
equation (25) states that when risk aversion is high, arbitrageurs do not smooth out
demand shocks and the scaled responses of yields depend on where the direct impact of a
factor is concentrated. In particular, if the long factor has a larger direct effect on demand
for long maturities than the short factor, then in equilibrium, the scaled response of yields
for longer maturities is larger for the long factor than for the short factor.

In order to test the localization hypothesis, we need empirical analogues that are
proportional to the model objects ∂y

(τ)
t

/
∂βst and ∂y

(τ)
t

/
∂βℓt . As shown in Section 3,

our high-frequency identification strategy is precisely designed to isolate the reactions of
the yield curve to Treasury demand shocks alone, effectively ruling out any other shocks
during these small windows around auctions. This insight allows us to arrive at a simple,
theory-based regression specification that can test the localization hypothesis using only
high-frequency changes in yields around auctions D(τ)

t = y
(τ),post
t − y

(τ),pre
t , which are data

12Appendix D.2 discusses sufficient conditions and derives the localization predictions of the model.
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analogues proportional to ∂y
(τ)
t

/
∂βkt .13 Our localization specification is

D
(τ)
t = α(τ) + γ(τ)s I(mt = short)D

(τ∗)
t + γ

(τ)
ℓ I(mt = long)D

(τ∗)
t + ε

(τ)
t , (26)

where I(mt = short) and I(mt = long) are indicator variables equal to one if there is an
auction of short-maturity and long-maturity bonds on date t, respectively. We estimate
equation (26) for all maturities τ , holding τ ∗ fixed.

Coefficients γ̂
(τ)
s and γ̂

(τ)
ℓ measure the relative effect of demand shocks for short-

maturity and long-maturity auctions respectively. Now we can restate the localization
hypothesis formally as a function of the coefficients γ(τ)s , γ

(τ)
ℓ , and risk aversion a as fol-

lows: i) as risk aversion a→ 0,
∣∣∣γ(τ)s − γ

(τ)
ℓ

∣∣∣→ 0 for all maturities τ ; ii) when risk aversion

is high (a≫ 0), then γ
(τ)
s > γ

(τ)
ℓ if τ < τ ∗ and γ

(τ)
s < γ

(τ)
ℓ if τ > τ ∗.

4.4 Empirical Localization Results

To test the state-dependent localization hypothesis, we estimate specification (26) sepa-
rately for two subsamples: a “non-crisis” period (risk aversion a is low), and a “crisis”
period (risk aversion a is high). Testing for the equality of coefficients γ̂(τ)s and γ̂(τ)ℓ in each
subsample shows whether demand shocks have more localized effects when risk aversion
is high. In our baseline estimates, we take the “crisis” period to be 2008-2012. We divide
the auctions into short-maturity (maturity of 5 years or less) and long-maturity (maturity
of 7 years or greater). The results are robust to alternative choices.

Since we construct D(τ)
t from secondary-market yields, we do not have measures for all

maturities τ at all times. Our approach is to run rolling regressions (across maturities),
including yields for maturities within ±2 years for each maturity τ ≤ 20 years and within
±4 years for each maturity τ > 20 year. Given that the choice of benchmark maturity
τ ∗ is arbitrary, we set τ ∗ = 3, with an eye towards applying our results to QE in order to
focus on the differential effects of intermediate and long-maturity yields.

Panel A of Figure 5 plots the estimates of γ̂(τ)s and γ̂
(τ)
ℓ for the non-crisis sample.

The estimated responses follow a similar hump-shaped pattern peaking at intermediate
maturities (around roughly 5-7 years), and then declining and stabilizing for longer term
maturities (with a possible slight uptick for very long (20+ years) maturities). In general,
we cannot reject equality of γ̂(τ)s and γ̂

(τ)
ℓ .

When we estimate specification (26) on the crisis sample, we observe a strikingly
13A jump-diffusion process would better match the discrete timing of Treasury auctions, and so our

approach based on continuous processes introduces some slippage between the model and the data for
the benefit of tractability. To be clear, the discrepancy with auctions in the model are: i) The auction
reveals the results (which we interpret as the demand shock), but in reality the actual change in holdings
occurs a few days later. ii) The bidding process can be thought of as “scooping up” changes in demand
leading up to the auction, which are only revealed when the auction closes. Formally, the model only
allows for contemporaneous, observable changes in demand.
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different pattern (Panel B of Figure 5). In response to shocks in demand for short-
and long-maturity Treasuries, both γ̂(τ)s and γ̂(τ)ℓ increase rapidly for τ < τ ∗, with the γ̂(τ)s

estimates increasing somewhat more quickly than γ̂(τ)ℓ . Once we move to maturities greater
than τ ∗, the estimates quickly diverge. Specifically, in response to shocks in demand for
short-maturity Treasuries, the yields for maturities greater than τ ∗ fall relative to the yield
response for τ ∗ (as shown by the estimates of γ̂(τ)s ). On the other hand, in response shocks
in demand for long-maturity Treasuries, yields for maturities τ > τ ∗ continue to increase
relative to the benchmark maturity τ ∗ (as shown by the estimates of γ̂(τ)ℓ ). For maturities
of 20 to 30 years, the relative response of yields to long-maturity demand shocks (γ̂(τ)ℓ ) is
over twice as large as the response of yields to short-maturity demand shocks (γ̂(τ)s ). We
can strongly (at the 0.1% level) reject the null of γ̂(τ)s and γ̂

(τ)
ℓ being equal.

These results are consistent with the key predictions of our preferred habitat frame-
work: during “normal” periods when financial risk-bearing capacity is high, demand
shocks for short- and long-maturity securities have relatively similar impacts on the yield
curve. During periods of financial distress when risk-bearing capacity is low, the impacts
are more localized: the impact of short-maturity demand shocks are largest for short ma-
turities, while the impact of long-maturity demand shocks peaks at the long end of the
term structure. These results provide support for the view that during financial crises,
arbitrageurs are less willing or able to integrate bond markets.

The localization results are robust to a variety of alternative assumptions. In the
interest of space, we provide summaries for a few key robustness specifications in this
section. First, we explore the sensitivity of our results to using alternative measures of
financial distress. Specifically, we consider two alternatives: i) an aggregate “intermedi-
ary capital ratio,” a market-based measure of financial distress (low intermediary capital
ratios are associated with lower risk-bearing capacity) described in He et al. (2016); ii) a
narrative-based measure of financial crisis from Romer and Romer (2017) (higher values
of the crisis indicator are associated with lower risk-bearing capacity). Both of these alter-
natives generate results similar to our baseline findings (see Appendix Figures B7 through
B11). Second, our results are robust to using different cutoffs for separating auctions into
short and long maturities. For example, when we use 10 years (rather than 7 years in the
baseline) as the cut-off for long-maturity auctions, the results (Appendix Figure B12) still
strongly support the localization hypothesis and, if anything, the point estimates for the
“non-crisis” period are even more similar than in our baseline specification. Third, as we
discussed above, the choice of the benchmark maturity τ ∗ is arbitrary in our framework.
To verify that this choice is indeed immaterial for our results, we experiment with values
other than τ ∗ = 3 and find similar results (e.g. Appendix Figure B13 reports estimates
for τ ∗ = 6). Fourth, our results are nearly identical when dropping auctions that occurred
during the weeks of QE announcements (Appendix Figure B14).

We also considered an alternative specification that regresses D(τ)
t directly on the bid-
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to-cover ratio, a crude proxy for demand. Although the formal test of the localization
hypothesis is not as straightforward using this specification (recall that the localization
hypothesis is about relative movements in yields across the term structure), we continue
to see strong patterns of localization in the “crisis” estimates, but little evidence of local-
ization in the “non-crisis” estimates (Appendix Figure B15).

We additionally explore state-dependence in the pass-through of Treasury demand
shocks to private borrowing rates. The logic of the localization hypothesis also suggests
that the pass-through to risky assets of Treasury demand shocks should lessen when risk-
bearing capacity is low. Although our model features only one type of risky asset, in
general there are many different assets of varying levels of risk. Panel A of Table 4 es-
timates a version of equation (26) where we regress the intraday change of various ETF
prices on D

(τ∗)
t , interacted with whether the auction took place during the crisis period.

For very safe or very risky corporate borrowing (LQD and HYG in columns 1 and 2,
respectively), we find little evidence of localization. Although the sign of the crisis inter-
action coefficient in both cases is positive, it is not statistically significant. On the other
hand, mortgage borrowing rates (MBB and VMBS in columns 3 and 4, respectively) seem
to exhibit substantial localization. In both cases, the interaction coefficient is positive,
economically large compared to the non-crisis coefficient, and highly statistically signifi-
cant. Next, we explore the pass-through to equity indices. The model is not designed to
capture the entire range of corporate funding structure, and hence does not make strong
predictions about localization from Treasury demand shocks to equity markets. Perhaps
consistent with this ambiguity in the model, the results are mixed. For the S&P500 (SPY,
column 5), we find little evidence for localization; while for the Russell 2000 (IWM, col-
umn 6), there is some support for localization: the coefficient is positive in non-crisis
times, but the interaction coefficient suggests that during crisis times the pass-through
drops to zero. However, in both cases, the R2 is low.

Finally, we explore state- and maturity-dependent localization for safe corporate bor-
rowing rates. We again estimate a version of equation (26), but use intraday changes in
various corporate bond ETFs as the dependent variable interacted with both the regime
(crisis/non-crisis) and maturity (short/long) of the auction. We utilize two sets of ETFs:
“BSV,” “BIV,” and “BLV” from Vanguard; and “CSJ,” “CIU,”, and “CLY” from iShares.
These ETFs track investment-grade bonds with short, intermediate, and long maturities
(respectively).14 The results for this exercise, documented in Panel B of Table 4, are not
directly comparable to our baseline Treasury results from Figure 5 because the ETFs are
measured as (log) price changes and because we do not observe the entire term structure
for corporate debt. Nevertheless, the results are consistent with our findings when ana-
lyzing the spillovers across the Treasury yield curve. The first row shows that demand

14The Vanguard ETFs were introduced in 2007, but include Treasuries in addition to corporate bonds.
The iShares ETFs only include corporate bonds, but have shorter time series.
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shocks in Treasury auctions also have large effects on corporate bond prices across the
entire term structure. The second row shows that this pass-through is similar for demand
shocks originating in long-term auctions in non-crisis times (with the one exception of
the coefficient for BLV). The third and fourth rows report the additional interaction co-
efficients for the “crisis” periods. The final row shows that the pass-through of demand
shocks for long-maturity Treasuries occurring during crisis periods has the same kind of
localization pattern as Figure 5. The coefficient becomes monotonically more negative as
we move from short-maturity to long-maturity bond ETFs. In particular, the coefficient
for the long-maturity ETFs is negative and statistically significant.

5 Implications for Quantitative Easing

In this section, we use our theoretical framework to make further progress in several di-
rections. First, we use a calibrated version of our model to quantify the role of preferred
habitat in rationalizing the response of asset prices to previous QE announcements. Sec-
ond, we use the model to evaluate the effectiveness of QE for macroeconomic stabilization
purposes. Third, we compare our findings for QE with what our model predicts for the
most recent rounds of quantitative tightening (QT). Finally, we study the sensitivity of
our findings to a wide array of parameterization choices. Besides reassuring us of the ro-
bustness of our main results, this also allows for a better understanding of the interactions
between the state of the economy and QE transmission. This exercise also allows us to
explore different implementations of QE in order to inform policymakers about possible
trade-offs associated with designing QE.

5.1 Model Calibration

For our quantitative exercises, we extend the model to allow for additional aggregate
shocks while also reducing the number of parameters we must calibrate. For ease of
exposition, we collect and restate all of the dynamic processes in our model, along with
all parameters to be calibrated. Aggregate demand and cost-push shocks zπ,t, zx,t enter
the Phillips and IS curves as follows:

Et dπt = (ρπt − δxt − zπ,t) dt ,

Et dxt = ς−1 (r̂t − πt − r̄ − zx,t) dt ,

dzπ,t = −κzπzπ,t dt+ σzπ dBzπ ,t ,

dzx,t = −κzxzx,t dt+ σzx dBzx,t .

The parameters κzπ , κzx govern the persistence in these processes, and the termsBzπ ,t, Bzx,t

are standard independent Brownian motions, with respective volatility terms σzπ , σx.
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To map the model to our empirical estimates in Section 4, we assume there are three
demand factors, corresponding to short- and long-maturity Treasury auctions, and a risky
asset. Each factor βk ∈

{
βst , β

ℓ
t , β̃t

}
evolves according to

dβkt = −
(
κββ

k
t + ϕi,βit

)
dt+ σβ dBβk,t ,

where we impose that the parameters κβ, ϕi,β, and σβ are identical for each demand factor.
The dynamics of the short rate and payoff process are given by:

dit = −κi(it − ϕππt − r∗) dt+ σr dBr,t ,

ddt = −κd(dt − ψxxt − d∗) dt+ σd dBd,t ,

Note that in order to reduce the number of parameters needed to be calibrated, we simplify
and assume that the central bank only responds to inflation, and the payoff process only
responds to the output gap. We explore sensitivity to these assumptions below.

Finally, we must choose functional forms regarding the effective borrowing weights and
the habitat elasticity and demand functions. We assume similar exponential functions as
in Vayanos and Vila (2021):

habitat elasticity function: α(τ) = α0 exp(−α1τ), (27)

habitat demand functions: θk(τ) = θ0τ(θ
k
1)

2 exp
(
−θk1τ

)
, (28)

effective borrowing weights: η(τ) = η0τη
2
1 exp(−η1τ), (29)

with analogous functional forms for α̃(τ), θ̃k(τ), η̃(τ) (and η̃0 = 1− η0 so that the weights
sum to one). Equation (27) implies that the habitat investor elasticity with respect to (log)
price is declining with maturity, and is single-peaked with respect to yields. Similarly,
equations (28) and (29) imply that the demand factor and borrowing weights are single-
peaked functions. In addition to improving numerical properties of the model, these
exponential functional forms allow us some flexibility in capturing key modeling features,
such as demand shocks targeted in specific areas of maturity space, without significantly
increasing the dimensionality of the problem. The parameters α0, θ0 govern the overall
size of the habitat elasticity and demand functions, while α1, θ

k
1 , η1 govern the shape as a

function of maturity: a lower value of these parameters imply that more of the weight of
these functions lies at longer maturities.

In order to impose more discipline on the model, we assume that the habitat demand
shocks are identical, except for the shape of the demand factor functions θs(τ), θℓ(τ),
and θ̃(τ). Specifically, we set θs1 = 0.5 and θℓ1 = 0.2 to match our regression analysis in
Section 4. These choices imply that the short factor is concentrated in short maturities
less than 5 years (and the mean of θs(τ) is 4 years), while the long factor has more weight
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in intermediate and long maturities above 7 years (and the mean of θℓ(τ) is 10 years).
We set the parameter α1 = 0.1 such that the habitat elasticity with respect to yields
(≡ τ · α(τ)) is maximized for the 10-year maturity, since this is often taken as a key
benchmark yield by investors. We further assume that the habitat demand and elasticity
functions are identical for Treasuries and risky assets: α(τ) = α̃(τ) and θs(τ) = θ̃(τ).

An important input into our model is the effective borrowing rate weights η(τ), η̃(τ).
If household borrowing responds only to movements in the instantaneous short rate, then
the macroeconomic dynamics of the model are identical to a textbook New Keynesian
model. Thus, the effective borrowing weights can be thought of broadly as capturing the
sensitivity of the macroeconomy to borrowing rates besides the federal funds rate. For
our baseline calibration, we assume that the effective borrowing rate only depends on
risky rate (η0 = 0 and hence η(τ) = 0 and only η̃(τ) is non-zero). Further, we set η1 = 2,
such that η̃(τ) peaks at 0.5 years and has an average value of 1 year. Our baseline choice
puts a heavy weight on short and intermediate maturities because trading volume in
debt markets is concentrated at shorter-term maturities. For instance, estimates from the
Securities Industry and Financial Markets Association (SIFMA) show that over the last
two decades, trading volume for Treasury securities with maturity of 3 years or less made
up about 45% of total trading volume on average (and this ratio was relatively stable,
with a minimum and maximum annual value of 41% and 52% respectively). Even within
coupon-bearing securities (excluding T-bills), trading volume for Treasury notes with
maturity of 3 years or less made up 33% of the trading volume in coupon-bearing Treasury
notes and bonds. In comparison, trading volume for Treasury bonds with a maturity of
greater than 11 years made up only 8% of the trading volume in coupon-bearing Treasury
notes and bonds. Trading volume for corporate debt markets across maturities is less
readily available. However, comparing trading volume in corporate bond markets and
commercial paper markets (from SIFMA and the Federal Reserve, respectively) further
suggests an outsized role of short-maturity rates. For instance, for 2020-2021 the trading
volume in commercial paper markets was on average 4 times that of trading volume
in corporate debt markets (for securities with maturity of at least one year). In short,
our calibration implies that household borrowing is a function of risky borrowing rates
(rather than the policy rate), largely concentrated at short and intermediate maturities.
We explore the sensitivity of our results to alternative calibrations below.

We jointly estimate the remaining parameters through a moment-matching exercise.15

We target volatility and cross-correlations of Treasury and corporate yields y(τ)t , ỹ
(τ)
t as

15Collecting unknown parameters into a vector ρ, we estimate the model by choosing ρ̂ to minimize the
weighted sum of squares: L(ρ) =

∑N
n=1 wn(m̂n −mn(ρ))

2, where {m̂n}Nn=1 are empirical moments and
{mn(ρ)}Nn=1 are model-implied counterparts as a function of ρ̂. The terms {wn}Nn=1 are weights placed
on each target moment. These weights are set to 1/NT for moments that are a function of maturity,
where NT is the number of maturities, and 1 otherwise, so that our estimates are not overly influenced
by maturity-based moments. Appendix D.1 derives the model-implied moments.
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well as inflation and the output gap πt, xt.16 Specifically, we target the following set of
moments: i) the volatility of 1-year Treasury yields, 1-year corporate-Treasury spreads,
the output gap, and inflation (in levels, 1-year changes, and 1-month changes); ii) the
correlation of inflation and 1-year Treasury yields, the correlation of output gap and 1-
year corporate-Treasury spreads, and the correlation of inflation and the output gap (in
levels); iii) the volatility of the entire term structure of Treasury yields (1-year changes and
1-month changes); iv) the correlation of the entire term structure of Treasury yields and 1-
year Treasury yields (1-year changes and 1-month changes); v) the localization regression
coefficients from Figure 5. Besides the localization regression coefficients, the data are
monthly. Inflation is defined as the year-over-year log change in the Personal Consumption
Expenditure price index. The output gap is defined as the cyclical component of Industrial
Production using an HP filter. Zero-coupon Treasury yields are from Gürkaynak et al.
(2007). Zero-coupon corporate bond yields are from the Treasury’s High Quality Market
(HQM) Corporate Bond Yield Curve data. We utilize the HQM data because it is a
long-running measure of the term structure of zero-coupon private borrowing rates which
are important for macroeconomic activity; however, these rates reflect relatively safe
corporate rates (rated A or above). Besides the localization coefficients, moments are
computed starting in 1986 (when 30-year yields are available in Gürkaynak et al. (2007)).

By targeting the localization regression coefficients from Figure 5, our model is in-
formed by our empirical localization results, which are well-suited to identify the preferred
habitat parameters of our model. We allow only the habitat risk-adjusted parameters
(a · α0, a · σβ · θ0, and a · ϕi,β) to be different in “crisis”, which we target to match the
“crisis” localization regression coefficients from Figure 5. All other parameters are as-
sumed to be the same across “crisis” and “non-crisis” periods. Given that the number of
observations in the “non-crisis” period is vastly larger than the number of observations in
the “crisis” period, we first estimate all of the parameters from the “non-crisis” sample.

The fit of the model is summarized in Figure 6 (moments which depend on maturity)
and Panel A of Table 5 (additional moments). Panel B of Table 5 reports our baseline
parameter values. Our parameterized model not only picks up the qualitative features of
the data but is also successful at matching the data quantitatively. Besides matching a
wide variety of volatility and correlation moments across borrowing rates and aggregate
variables, the model localization coefficients are close to the data localization coefficients
in “crisis” and “non-crisis” periods (Panels A through D of Figure 6). Nonetheless, given
the challenges associated with estimating DSGE models, one should treat this parame-

16The habitat elasticity functions and demand functions enter the solution multiplicatively with risk
aversion and demand shock volatility, so they are only identified up to a scaling factor. If shocks to
quantity demand for Treasuries and risky assets can be measured directly across all periods (including
outside auction times), one can separately identify these parameters. Because such measures are not
available, the literature (e.g., Vayanos and Vila (2021)) typically chooses some normalization, such as
σβ = 1. In our auction data, the bid-to-cover ratio captures this information partially; this information
is not necessary for our calibration strategy, but we utilize this information in our QE exercises.
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terization with caution, and we run extensive sensitivity analysis in Section 5.5.

5.2 Response of the Yield Curve to QE1

To assess the contribution of preferred habitat theory to the observed reaction of yields to
quantitative easing, we feed a “QE1” shock into our model, compute predicted responses
of yields at different maturities, and compare predictions to actual changes in yields. We
focus on QE1 because it was arguably the “cleanest” QE shock: there are a clear set of
policy announcement events, and the observed response to these events are unlikely to be
plagued by anticipation issues relative to later rounds of QE. But in order to accurately
capture the relevant features of QE1, we do not treat QE as precisely equivalent to a habi-
tat demand shock in our model. Besides the obvious fact that QE1 was significantly larger
than typical private demand shocks, QE1 also occurred unexpectedly, and markets had
different expectations about the dynamic properties QE1 compared to typical private de-
mand shocks. Moreover, QE1 simultaneously purchased Treasuries and mortgage-backed
securities (MBS), and the profile of maturities was different than in auctions. Thus, in
our model QE1 is not a simple rescaling of the habitat demand shocks during auctions.
We discuss in detail how we mimic the actual QE1 shock in the model.

Persistence: We assume that this shock was completely unexpected (“MIT shock”), and
that afterwards markets expected purchases to be unwound slowly and deterministically:

dβQEt = −κQEβQEt dt . (30)

We set the inertia parameter κQE = 0.2. This magnitude roughly implies that markets
expected the Fed to unwind its purchases somewhat faster than holding to maturity (more
precisely, the half-life of the purchases is roughly 3.5 years). Ex-post, the MBS holdings
roughly followed this process until the reintroduction of MBS purchases during QE3. On
the other hand, the Treasuries purchased as part of the Fed’s QE programs were held on
the balance sheet for a very long time, and holdings remained elevated well beyond that
implied by our parameterization. However, this does not imply that markets expected
this ex-ante.17 We explore the sensitivity of this assumption below.

Composition: QE1 involved purchasing a total of roughly $1.25 trillion mortgage-backed
securities (MBS) and $300 billion Treasuries, concentrated on intermediate and long-term
maturity purchases (over 5 years).18 Given this focus, we assume the same functional

17The actual purchases of MBS and Treasuries during QE1 were planned to take place over the 6
months following the March 2009 announcement. The FOMC statements during this time do not make
any reference to selling these securities off, but state that the FOMC will “carefully monitor the size
and composition of the Federal Reserve’s balance sheet in light of evolving financial and economic de-
velopments.” Eventually, the FOMC made clear their policy of Treasury reinvestment. For instance, in
Chairman Bernanke’s July 2010 report to Congress, he stated that “the proceeds from maturing Treasury
securities are being reinvested in new issues of Treasury securities with similar maturities.”

18In our analysis, we exclude purchases of agency debt (which accounts for a small fraction of the total
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form as in equation (28) for the QE demand function θQE(τ) and set θQE1 = 0.35, such
that the model-implied QE1 purchases are of relatively long-term maturity but in between
the maturities of the preferred habitat “short” and “long” factor described above (hence
the mean of θQE(τ) is roughly 6 years). These purchases are split up such that roughly
80% of QE1 purchases are risky assets in the model, while the remaining 20% are of safe
bonds, in order to match the fraction of actual MBS and Treasury purchases during QE1.

Size: Matching the overall magnitude of QE1 requires a few additional steps. As dis-
cussed above, our calibration strategy does not separately identify the size of preferred
habitat demand shifts and arbitrageur risk aversion. This allows us to compute the re-
sponse of yields to a “unit” demand shock ∂y

(τ)
t

/
∂βt . However, our moment-matching

exercise provides no information about the dollar magnitude of a “unit” demand shock
in the model, since we only can estimate the product a · σβ · θ0. Our model is meant to
capture all the volatility of demand shocks, not just those which occur during auctions.
However, we can utilize additional information from Treasury auctions to pin down the
dollar magnitude of demand shocks. From Table 2, a unit increase in the bid-to-cover for
an auction of intermediate maturities moves 10-year yields by roughly 3 basis points. This
movement in the bid-to-cover ratio corresponds to roughly $30 billion, which we denote
by ∆β

(auc)
t . Hence, we have ∆β

(auc)
t · ∂y(10)t

/
∂βt ≈ 3bp and can use the model to solve for

∆β
(auc)
t . Finally, since QE1 was roughly $1.5 trillion, we have that ∆β(QE)

t ≈ 50×∆β
(auc)
t .

To be clear, this does not imply the yield curve response to QE1 is hard-wired to be the
same as a (scaled-up) auction demand shock.

Panel A of Figure 7 plots the cumulative change observed in the data and predicted in
the model. We use the cumulative change in the yield curve reported in Krishnamurthy
and Vissing-Jorgensen (2011) following the 5 major QE1 event dates as the empirical
response of the yield curve to QE1. The remarkable consistency between the responses
suggests that the actual market reaction to QE1 announcements aligns with the predic-
tions of our model in response to observed shifts in private demand for Treasuries. This
finding implies that the net effect of other channels of QE (e.g., inflation expectations,
forward guidance, signaling) could be smaller than thought before.

5.3 Macroeconomic Effects of Quantitative Easing

While there is extensive research documenting the responses of financial markets to rounds
of QE, little is known about how QE affected the broader economy because QE events
are so infrequent. We cannot shed more light on this using regression analysis or similar
tools, but we can use our calibrated model to quantify the macroeconomic effects of QE.

Panel B of Figure 7 shows that our baseline calibration implies that in terms of macroe-
conomic effects, on impact QE1 increased output by roughly 0.7 percentage points, and

purchases during QE1) given the complexities associated with the health of Freddie Mac and Fannie Mae.
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inflation by 0.35 percentage points. These effects then monotonically fall towards zero
over the next few years. The cumulative effects are

∫∞
0
E0 [xt] dt ≈ 0.53 percentage points

and
∫∞
0
E0 [πt] dt ≈ 0.6 percentage points. For comparison, these stimulative effects of

QE1 are comparable to a rate cut of roughly 50-75 b.p. in the model, undertaken when
financial markets are not distressed (and note that conventional monetary policy rate cuts
have a faster degree of mean reversion in our model).19

5.4 Comparing Quantitative Easing and Tightening

To rein in inflation, central banks are beginning the implementation of quantitative tight-
ening (shrinking their balance sheets through asset sales or a reduction in reinvestment of
maturing assets). In our linearized model, QE and QT are mirror images of one another.
Differences in the macroeconomic impacts of QE and QT can arise only from differences in
the financial environment or in the design of the program. These differences are salient in
the context of the Fed’s QT policy, which began in June 2022. First, the Fed is conducting
QT in a relatively passive, back-loaded fashion: QT began with a monthly reduction of
up to $30 billion in Treasuries and $17.5 billion in MBS, with both caps doubling after
one quarter. The increasing pace of QT (which was announced in advance) differs from
how the Fed conducted QE1. Second, the Fed’s QT has focused more on a reduction of
Treasury holdings than MBS, again in contrast with QE1. Third, the maturity compo-
sition of QT is shorter than QE1. Fourth, although the Fed has not specified the size
of QT, this program is likely to be larger than the purchases undertaken during QE1.
Finally, risk-bearing capacity of financial markets is higher now than during QE1.

While there is substantial uncertainty associated with how the Fed will conduct QT
going forward, we attempt to parsimoniously capture these salient differences within the
model. We assume that the QT sales shock βQTt is composed of 65% Treasuries and
35% MBS, mimicking the composition of the Fed’s QT balance sheet reduction caps.
In line with the maturity composition of the Fed’s balance sheet, we also assume that
θQT1 = 0.5 so that the maturity of the assets sold during QT is shorter than the maturity
of assets purchased during QE1 (and the mean of θQT (τ) is 4 years; Appendix Figure B16
compares the change in the Fed’s Treasury holdings by maturity following QE1 and QT).
Capturing the passive, back-loaded approach of QT while maintaining the mean-reverting
properties necessary in the model requires some additional changes. We posit that βQTt

19In our model, there is little difference between (1) the Fed buying assets (and thus reducing assets
available to the private market) and (2) the Treasury issuing less debt (and thus reducing assets available
to the private market). Thus, while comparing our estimated effect of QE1 and actual data, one should
keep in mind that the Treasury increased issuance of debt by approximately $2.7 trillion between Decem-
ber 2008 and October 2010 (the duration of QE1) relative to the pre-crisis trend. The average maturity
of debt issued over this period was 6.4 years. If we assume that this shock to the supply of government
debt is as persistent as QE1 (i.e., debt is held to maturity), then QE1 was roughly offsetting the increased
supply of Treasuries and the combined macroeconomic effect of changes in government debt due to fiscal
and monetary policies was a wash.
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is a mixture of an “active” component (βQT,At ) and a “passive” component (βQT,Pt ) such
that βQTt = λQTβ

QT,A
t + (1− λQT )β

QT,P
t where

dβQT,At = −κQT,AβQT,At dt , (31)

dβQT,Pt = −
(
γQT,A,Pβ

QT,A
t + κQT,Pβ

QT,P
t

)
dt . (32)

Thus, QT sales initially are driven by the “active” component βQT,At , which reverts back
to steady state just as our QE1 shock (and we choose the same inertia κQT,A = κQE).
However, the “passive” factor βQT,Pt then kicks in, capturing the slow increase in the
magnitude of QT sales following the announcement of QT (taken into account by market
participants). We choose γQT,A,P = 1.75, κQT,P = 2.25, and λQT = 0.25 so that the QT
shock doubles in magnitude after one quarter, peaks after 1 year, and then reverts to half
of the peak after roughly 4-5 years. The overall magnitude of the initial QT shock is
chosen to be double that of QE1: ∆βQT,At = 2×∆βQEt . Thus, while QT sales are smaller
than QE1 purchases at the beginning of the program, QT sales eventually surpass QE1
in magnitude, remaining elevated so that the cumulative size of QT is larger than QE1.20

Finally, we choose the risk-adjusted parameters to be equal to 75% of our baseline
QE1 calibration. On the one hand, despite increased volatility during COVID-19, many
broad measures of financial distress (e.g., the Chicago Fed National Financial Conditions
Index) remain significantly below the peaks observed during the Great Recession. On the
other hand, some measures of intermediary health like He et al. (2016) which are more
closely related to the risk-bearing capacity of arbitrageurs show signs of deterioration in
the last year (see Appendix Figure B7). Thus, we split the difference for our baseline QT
experiment. However, we view this as a lower bound on risk-bearing capacity (and hence
the macroeconomic reactions to QT should be viewed as upper bounds).

Panel C of Figure 7 plots the impulse response of inflation and the output gap to our
QT shock. Despite the fact that QT is larger in magnitude than QE1, the macroeconomic
effects on impact are somewhat smaller. For instance, the initial response of output and
inflation is a decline of between 0.25 and 0.3 percentage points. However, the persistent
passive component also generates a longer-lasting effect of QT compared to QE1, and
implies that the response of the output gap to QT is hump-shaped rather than monotonic.

The design of QT is in part responsible for the relatively muted response of output and
20Appendix Figure B17 compares the dynamics of QE1 and QT shocks in the model. The Fed has

been very clear about the initial timing of the Treasury and MBS caps (e.g., see the March 2022 FOMC
statement). Going forward, the FOMC has stated that they intend to “maintain securities holdings in
amounts needed to implement monetary policy efficiently and effectively in its ample reserves regime,”
although the FOMC has been reticent regarding what this means quantitatively. But if we take the size
of the balance sheet pre-COVID as this target level, then the overall size of QT relative to GDP would be
roughly twice the size of QE1 (see also Ennis and Kirk (2022)). Hence, these calibration choices represent
our best translation into a mean-reverting shock in the model. Because of the linearity of the model,
responses scale one-for-one with the overall size of shocks. All other sensitivity analyses are conducted
in Section 5.5.
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inflation. However, the key difference between QE1 and QT is the risk-bearing capacity of
financial markets. As discussed above, when risk-bearing capacity increases (a→ 0), our
model collapses to a textbook New Keynesian model and recovers the standard neutrality
results regarding asset purchases or sales. In summary, according to our model QT alone
is unlikely to bring down inflation from its historically high levels. The differences in the
model-implied effects of QE and QT motivate our subsequent sensitivity analysis for the
design of these programs.

5.5 Alternative Designs of Quantitative Easing

We now explore how variations in structural parameters and in the implementation of
QE influence the ability to move output and inflation. Because in our model output
and inflation co-move strongly in response to QE shocks, we focus on the sensitivity
analysis for output responses (Figure 8) and relegate results for inflation to the appendix
(Appendix Figure B18). For all sensitivity analyses, we study how the macroeconomic
effects vary in our baseline calibration (solid line), and also compare with counterfactual
“risky-only” and “Treasury-only” QE policies (dashed and dotted lines, respectively),
which are identical to our QE1 calibration but only purchase risky or safe assets.

Risk Appetite: As we discussed above, the power of QE to affect yields at target
maturities is high in crisis times and weak in non-crisis times. Consistent with this
insight, Panel A of Figure 8 shows that the transmission is highly sensitive to the risk
aversion of arbitrageurs. Given that our baseline calibration for “crisis” corresponds to
the Great Recession, one has to have a financial crisis of truly unprecedented proportions
to materially increase the power of QE-based tools. As a result, the balance of risks
appears to be somewhat one-sided: it is difficult to raise the power of QE beyond what
was achieved during the Great Recession but it is relatively easy to reduce the power
as soon as financial panics calm down. This logic suggests that QE is less effective as
a “conventional” tool to the extent that “conventional” entails well-functioning financial
markets (and was reflected in our analysis of QT). This finding is true regardless of the
design of QE purchases: the counterfactual “risky-only” and “Treasury-only” QE policies
have the same pattern as a function of risk aversion.

Risky Asset Uncertainty: We next discuss how the transmission of QE depends
on the riskiness of risky assets. Panel B of Figure 8 plots the long-run effect of QE on
output as we increase σd from the baseline calibration. We find that QE policy has larger
macroeconomic effects as risky assets become riskier. The intuition for this can be seen
by examining the counterfactual “risky-only” and “Treasury-only” QE policies. Unlike
the previous sensitivity exercise, these policies act differently as a function of risky as-
set uncertainty. As uncertainty increases, the effect of risky asset purchases on output
increases. However, the impact of Treasury purchases decreases. Intuitively, when risky
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asset payoff uncertainty is very low, Treasuries and risky assets are good substitutes (in
the limit of no payoff risk, these two assets become perfect substitutes). In this case,
“risky-only” and “Treasury-only” QE policies have similar effects on household borrow-
ing rates, and therefore macroeconomic transmission is similar because the payoff risk
extraction channel discussed in Section 4 disappears. However, as risky asset uncertainty
increases, Treasuries and risky assets become less substitutable. Now, “risky-only” QE
policies are highly effective at moving household borrowing rates (and therefore have
larger macroeconomic effects), while “Treasury-only” QE policies have smaller effects.
Unwinding: One practical question for policymakers is how long central banks should
hold assets accumulated during QE rounds (e.g., Sims and Wu (2020) and Karadi and
Nakov (2020)). To this end, we vary κQE in equation (30), which governs the unwinding
process. Panel C of Figure 8 shows that the effects on output nearly double when compar-
ing very fast and very slow unwinding (the x-axis reports results from κQE ∈ (0.05, 1.0),
implying a half-life of about 14 years to 3 quarters, respectively). Intuitively, if the Fed
makes large purchases of assets but then quickly sells those securities, we should not
observe large and long-term macroeconomic effects. Rather, it is the cumulative size of
QE over time that matters. Hence, policymakers should be clear about how long the
central bank expects to hold the securities on its balance sheet. Providing a type of
“forward guidance” regarding the expected path of purchases can potentially increase the
immediate effectiveness of these policies.
Asset Maturity: The maturity of the assets purchased during QE is one of the key
decisions policymakers must make. The x-axis of Panel D of Figure 8 is the maturity of
the assets purchased (where a higher value implies shorter maturity). The baseline QE
policy has larger macroeconomic effects as the maturity of the purchased assets increases.
Long-maturity assets are riskier in terms of duration risk, and hence purchasing these
assets amplifies the duration risk extraction channel. However, we again see a dichotomy
between the counterfactual “Treasury-only” and “risky-only” QE policies. This is because
the payoff risk extraction channel is still active when the duration of the risky asset
purchases is short. Hence, while Treasury purchases become ineffective as the maturity
becomes very short-term, risky asset purchases still have sizable macroeconomic effects.
Effective Borrowing Weights: Panels E and F explore the robustness of our assump-
tions regarding the effective borrowing weight function η(τ), which as discussed above is
an important input into our model. Panel E of Figure 8 plots the long-run macroeco-
nomic effects of QE as the effective borrowing rate weights become more concentrated at
short-term rates (larger values of the x-axis) or at long-term rates (smaller values of the
x-axis). As expected, if the macroeconomy is more sensitive to longer-term borrowing
rates, QE overall becomes more effective. Because the short end of the term structure is
pinned down by the Fed’s policy rate, QE will naturally have larger effects on intermediate
Treasury yields. Moreover, given the localization results discussed above, longer maturity
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purchases will have larger effects on long-term rates when the risk-bearing capacity of
financial markets is relatively low.

Panel F instead varies the weights placed on safe and risky borrowing rates. In the
baseline, the effective borrowing rate depends entirely on risky rates (corresponding to
the x-axis value of 0). We compare with alternative weights placed on safe borrowing
rates, up until the effective rate is only a function of safe rates (corresponding to the
x-axis value of 1). As expected, when household borrowing is more sensitive to safe rates,
the counterfactual “Treasury-only” QE program becomes more powerful. However, the
magnitude of the differences here is small.

Interaction with Conventional Policy: Next we turn to how the macroeconomic
effects of QE interact with conventional policy via the standard Taylor rule. Panels G,
H, and F vary the Taylor coefficients on inflation ϕπ, the output gap ϕx, and inertia κi
(respectively). In general, if markets expect the Fed to react to the macroeconomy more
quickly and aggressively with the policy rate (corresponding to larger values on the x-
axis), then the macroeconomic effects of QE are attenuated. However, for a wide range
of coefficient values, the macroeconomic effects of QE are quantitatively similar.
QE Uncertainty: Finally, we assumed that QE1 was completely unanticipated by
markets. This may be an accurate representation of the first round of quantitative easing,
but over a decade later it is likely that markets now consider the possibility of future
QE shocks. To model the recurrent nature of QE, we modify equation (30) and instead
assume that QE shocks are described by

dβQEt = −κQEβQEt dt+ σQE dBQE,t . (33)

Hence, whenever σQE > 0, QE shocks themselves may lead to additional macroeconomic
volatility. Further, risk-averse arbitrageurs must hedge against QE risk, in addition to
fundamental sources of risk in the economy.

Panel J of Figure 8 explores the change in long-run macroeconomic volatility as a
function of the volatility of QE shocks. σQE = 0 is our baseline estimate (marked by
the vertical dotted line); the x-axis is the volatility of QE shocks relative to the volatility
of habitat demand shocks σQE

σβ
; the y-axis is the the long-run (unconditional) variance of

output V ar[xt]. The results provide an important note of caution for central bankers:
increased uncertainty regarding QE leads to increased macroeconomic volatility. In other
words, although policymakers may desire the added flexibility of discretionary QE tools,
the downside is that this increases the uncertainty surrounding these policy tools. By
communicating clearly the expected path of QE purchases, policymakers should be able to
reduce market uncertainty and prevent volatility spillovers from QE into the real economy.
This provides additional support for the use of QE rules or forward guidance regarding
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asset purchases in the spirit of Greenwood et al. (2016).21

6 Concluding Remarks

Quantitative easing programs during the Great Recession were a massive policy exper-
iment. The redeployment of QE in response to the COVID-19 crisis and the current
reversal through quantitative tightening is a testament to policymakers’ belief in their
effectiveness. But the precise channels through which QE policies work are still not clear,
and so this paper seeks to unbundle QE by isolating one specific channel. Our focus
is “preferred habitat,” which hypothesizes that there are investor clienteles with specific
preferences for bonds within a given maturity segment. Utilizing Treasury auctions, we
identify shifts in private demand for Treasuries that mimic QE, but are independent of
all other plausible channels of QE. We develop and confirm a key “localization” test of
preferred habitat theory: when risk-bearing capacity is low, purchase or sale shocks of
specific bonds in a given maturity segment have larger effects on bonds within this range.
We then develop a general equilibrium preferred habitat model, using our demand shock
results to discipline the model calibration. Our quantitative results are consistent with
the view that QE programs worked largely through preferred habitat forces, and that
QE is a useful (but modest) policy tool for macroeconomic stabilization during crises.
However, the effects of QE weaken if financial markets are well-functioning, the holding
period of assets purchases is short, or the program focuses on safer, shorter-duration as-
sets. Further, uncertainty about future QE/QT rounds can lead to excess macroeconomic
volatility. Given the design of quantitative tightening as well as the prevailing financial
environment, our model predicts rather small effects on output and inflation.

Our results suggest several promising directions for future work. First, the demand
shocks we construct are a potentially important input to evaluate a host of quantity-based
asset pricing theories. Second, while we have focused on preferred habitat in the market
for Treasuries and other debt securities, this channel may be relevant for other arenas, too.
For example, we document suggestive evidence supporting state-dependence of demand
shock spillovers to mortgage-backed securities, and possibly to equities. In a similar spirit,
Greenwood et al. (2020) and Gourinchas et al. (2022) explore preferred habitat effects in
currency markets and international bond markets. Finally, preferred habitat is one of
many financial frictions relevant for economic agents. It will be interesting to explore how
preferred habitat interacts with debt vs. equity structure of firms, liquidity constraints,
and banking frictions. Apart from clarifying the distributional aspects of QE-like policies,
this extension could also shed more light on how preferred habitat can affect investment.

21Additional robustness exercises are reported in Appendix Figures B19 and B20.
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Appendix A Proofs

Proof of Lemma 1. Collect all state and jump variables in a vector Yt =
[
y⊤
t x⊤

t

]⊤
.

The interest rate process (12), risky asset payoff process (13), and habitat demand factor
processes (11) are all affine functions of Yt. Moreover, the (linearized) Phillips curve (14)
and IS equation (15) are also affine functions of Yt, since from equation (16) r̂t = Â⊤yt+Ĉ

is affine in the state variables. Aggregate dynamics can thus be written

dYt = −Υ
(
Yt − Ȳ

)
dt+ S dBt . (A1)

Note that Υ depends on Â, but which we currently take as given. Then the rational ex-
pectations equilibrium is found immediately from Buiter (1984). Partition the eigenvalues
and eigenvectors as follows:

Υ = QΛQ−1, Λ =

[
Λ1 0

0 Λ2

]
, Q =

[
Q11 Q12

Q21 Q22

]
,

where the partitions correspond to the state yt and jump xt variables. If the number of
“stable” eigenvalues (non-negative real parts) equals the number of state variables, then
the rational expectations equilibrium dynamics are given by (17) and (18), where

Γ = Q11Λ1Q
−1
11 , Ω = Q21Q

−1
11 . (A2)

Proof of Lemma 2. Since asset prices are given by (19) and the state evolves according
to (17), Ito’s Lemma implies that dP

(τ)
t

P
(τ)
t

= µ
(τ)
t dt+ σ(τ) dBt, with σ(τ) = −A(τ)⊤σ and

µ
(τ)
t = A′(τ)⊤yt + C ′(τ) +A(τ)⊤Γ (yt − ȳ) +

1

2
A(τ)⊤ΣA(τ), (A3)

where Σ ≡ σσ⊤ and with analogous expressions for P̃ (τ)
t . Then differentiating the arbi-

trageur budget constraint (7) with respect to holdings X(τ)
t gives the optimality conditions

µ
(τ)
t − it = a

[∫ T

0

X
(τ)
t A(τ) + X̃

(τ)
t Ã(τ) dτ

]⊤
ΣA(τ),

again with analogous conditions with respect to X̃(τ)
t .

Substituting equation (19) into the habitat demand equations (10), we can write
Z

(τ)
t = [α(τ)A(τ)−Θ(τ)]⊤ yt and Z̃

(τ)
t =

[
α̃(τ)Ã(τ)− Θ̃(τ)

]⊤
yt, where

Θ(τ) =
[
. . . θk(τ) . . .

]⊤
, Θ̃(τ) =

[
. . . θ̃k(τ) . . .

]⊤
. (A4)
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Then substitute market clearing conditions X(τ)
t = −Z(τ)

t , X̃
(τ)
t = −Z̃(τ)

t into the optimal-
ity conditions and collect terms that are linear in the state yt to get:

A′(τ) +MA(τ)− ei = 0, Ã′(τ) +MÃ(τ)− ei = 0, (A5)

where M is given by equation (21). Taking M as given, this is a linear system of differential
equations. To derive initial conditions, note that at maturity, the riskless bonds pay $1
while the risky asset pays Dt, so the τ = 0 prices are given by P (0)

t = 1, P̃
(0)
t = Dt. Hence,

we have A(0) = 0, Ã(0) = −ed. Then assuming M is diagonalizable and invertible, the
solution is given by equation (20).

Proof of Proposition 1. In an affine equilibrium where asset prices are given by equa-
tion (19), we have that r̂t =

∫ T
0

(
η(τ)µ

(τ)
t + η̃(τ)µ̃

(τ)
t

)
dτ . Substituting equations (A3)

and (A5) into this expression and collecting terms which are linear in the state yt gives
equation (22). Equilibrium is the solution of the fixed point problem implicitly defined
by equations (21) and (22). Rewrite these conditions in the following function:

f(Â;M; a) =

ei + (Γ(Â)⊤ −M
)
ν(M)− Â

vec
{
Γ(Â)⊤ − a ·Λ(M)−M

} , (A6)

where Λ(M) and ν(M) are the integral terms from equations (21) and (22). In both
cases, dependence on M comes through the affine coefficients A(τ), Ã(τ). We have also
made explicit the dependence of Γ on Â, which can be seen in the proof of Lemma 1. If
J ≡ dimyt, then dimM = J×J and dim Â = J and the function f : RJ(J+1)+1 → RJ(J+1).
For any value of a, equilibrium is defined by f(Â;M; a) = 0.

We now analyze the solution in a neighborhood around a = 0. For a = 0, clearly
Â = ei and M = Γ(ei)

⊤. The partial derivatives evaluated at this point are given by:

∂f

∂Âj

=

[∂Γ⊤
/
∂Âj

]
ν(M)− ej

vec
[
∂Γ⊤

/
∂Âj

]  , ∂f

∂Mkl

=

[
eke

⊤
l ν(M)

− vec eke
⊤
l

]
,

where ej, ek, el are standard normal basis vectors. The matrix ∂Γ
/
∂Âj is the derivative

of the state dynamics matrix Γ with respect to the j-element of Â; because this depends
on derivatives of the eigendecomposion defined in the proof of Lemma 1, even in the case
of a = 0 this is a complicated expression. Nevertheless, from this we can show that the
Jacobian of f with respect to Â,M evaluated at the a = 0 solution has full rank. In fact,
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writing this Jacobian in block form, we have

Df ≡

[
D11 D12

D21 −IJ2

]
, (A7)

and D12 =
[
IJ · ν1 . . . IJ · νJ

]
, where νj is the j-element of ν(M). Then it can be

easily shown that the elementary row operations which transform D12 into the zero matrix
simultaneously transform D11 into −IJ . Hence, detDf = 1 and the result follows from
the implicit function theorem.
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Figure 2: Intraday Treasury Yield Movements

Notes: Intraday movements in 30-year Treasury yields around the announcement of auction results for two selected auction
dates. Dashed vertical lines denote the close of an auction and release of results. In both auctions considered, auctions
closed at 1:00pm and results were released a few minutes thereafter.
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Figure 3: Demand Shocks and the Bid-to-Cover

Notes: Binned scatter plots examining the relationship between demand shocks and the bid-to-cover ratio across auctions.
The bid-to-cover is the ratio of the dollar value of bids received to those accepted at a given auction. Each figure controls
for four lags of the bid-to-cover.
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Figure 4: Long-Difference Response to Demand Shocks

Notes: Responses of 10-year Treasury spot rates (Panel A) and Moody’s Aaa yields (Panel B) to demand shocks Dt (pooled
across maturities). We compute “long-difference” regressions: on an auction date t, the dependent variable is yt+h − yt−1,
the change h days after the auction relative to the day before the auction. The solid line plots the coefficients from
regressions for h = 0, . . . , 60; the shaded region and dotted lines correspond to one- and two-standard error (Newey-West,
9 lags) confidence bands. The dashed line compares the long-horizon effects of the March 2009 QE1 FOMC announcement
(normalized so that the impact on announcement is one).
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Figure 5: Localization Regression Results

Notes: Plots of the regression coefficients from regression equation (26). The top panel compares estimates from short-
and long-maturity auctions during non-crisis periods; the bottom panel compares these estimates during crisis periods. 2
standard error (Newey-West, 9 lags) confidence intervals are included. Appendix Figure B6 reports p-values for the equality
of estimates.
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Figure 6: Model Fit

Notes: Panels A through D plot the model-implied and empirical coefficients from regression equation (26); th panels A and
B plot the coefficients from the model calibrated to non-crisis periods, while the panels C and D plot the coefficients from
the model calibrated to crisis periods. Panels E through H compare additional targeted volatility and correlation moments
in the model (solid lines) with the data (scatter points) as a function of maturity.
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Figure 7: Model-Implied Response to QE1 and QT

Notes: Panel A compares the observed (cumulative) yield reactions and the model-implied change in yields following a
QE1 shock (in basis points). Panels B and C plot the model-implied IRFs of output and inflation following QE1 and QT,
respectively (in percentage points).
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Figure 8: QE Sensitivity Analysis: Output

Notes: Response of output to a QE shock as a function of various model parameters. Panel A: arbitrageur risk aversion (a).
Panel B: risky payoff uncertainty (σd). Panel C: QE mean reversion (κQE). Panel D: QE maturity duration (θQE

1 ). Panel
E: effective borrowing maturity weights (η1). Panel F: effective borrowing risky/safe weights (η0). Panel G: inflation Taylor
coefficient (ϕπ). Panel H: output gap Taylor coefficient (ϕx). Panel I: inertia Taylor coefficient (κi). Panel J: QE volatility
(σQE). In each panel, the vertical dashed line corresponds to the baseline QE calibration. The dashed orange line shows
results for a hypothetical QE policy which purchases risky assets only; similarly, the dotted blue line is for Treasury-only
purchases. Panel J reports the long-run volatility V ar [xt], while all other panels report the cumulative effect following the
QE shock
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Table 1: Auction and Shock Summary Statistics

Mean Median Std. Dev. Min Max Obs.

Panel A: Auction Summary Statistics
Offering Amount (billions) 22.48 22.00 9.02 5.00 44.00 1047
Total Tendered (billions) 61.98 57.91 29.91 11.35 160.96 1047
Term (Years) 8.23 5.00 8.68 2.00 30.25 1047
High Yield 3.01 2.68 1.83 0.22 7.79 1047
Bid-to-Cover 2.60 2.58 0.45 1.22 4.07 1047
Bid-to-Cover by type♯

Direct Bidders 0.22 0.21 0.16 0.00 0.80 827
Indirect Bidders 0.54 0.53 0.17 0.03 1.05 827
Primary Dealers 1.92 1.87 0.34 0.98 3.12 827

Fraction Accepted by type†
Depository Institutions 0.01 0.00 0.02 0.00 0.32 896
Individuals 0.01 0.00 0.02 0.00 0.19 896
Dealers 0.53 0.53 0.16 0.12 0.98 896
Pensions 0.00 0.00 0.01 0.00 0.21 896
Investment Funds 0.26 0.23 0.17 0.00 0.74 896
Foreign 0.19 0.18 0.09 0.00 0.61 896
Other 0.00 0.00 0.01 0.00 0.13 896

Panel B: Shock Summary Statistics
Dt 0.03 0.00 2.12 -8.30 17.80 1047
D

(2Y )
t -0.06 0.00 1.39 -5.20 4.40 256

D
(3Y )
t 0.15 0.10 1.32 -5.30 5.00 134

D
(5Y )
t 0.20 0.30 1.94 -5.55 8.50 233

D
(7Y )
t -0.28 0.05 2.10 -8.30 5.50 106

D
(10Y )
t -0.04 -0.05 2.55 -6.80 12.20 186

D
(30Y )
t 0.09 -0.15 3.28 -7.40 17.80 132

Panel C: Shocks Across Regimes
Non-ZLB 0.08 0.10 2.02 -7.40 12.20 563
ZLB -0.03 0.00 2.23 -8.30 17.80 484
Expansion 0.03 0.00 2.03 -8.30 17.80 963
Recession -0.07 -0.05 2.95 -7.10 9.50 84

Panel D: Non-Auction Shocks
D̃

(2Y )
t -0.07 0.00 1.32 -19.20 11.00 1225

D̃
(5Y )
t -0.01 0.00 1.13 -17.40 12.90 1924

D̃
(10Y )
t -0.01 0.00 1.03 -13.30 8.90 2151

D̃
(30Y )
t 0.01 0.00 0.92 -8.50 5.60 1914

Notes: Panel A presents summary statistics for Treasury note and bond auctions from 1995-2017 for which we have
intraday data. † indicates that the moments are computed for 2000 onward, the period for which these data are available.
♯ indicates that the moments are computed from 2003 onward, the period for which these data are available. Panel B
summarizes demand shocks Dt = yt,post − yt,pre, the intraday change in Treasury yields before and after the close of an
auction (in basis points). For newly issued securities, the yields are from when-issued trades. For reopened securities, the
yields are from secondary-market trades. Panel B also reports statistics for shocks D(m)

t = y
(m)
t,post − y

(m)
t,pre separately for

major maturities m = 2, 3, 5, 7, 10, 30 years. Panel C reports statistics separately for binding/non-binding ZLB periods
and recessions/expansions. Panel D reports synthetic shocks on non-auction dates D̃(m)

t = y
(m)
t,post − y

(m)
t,pre using the same

intraday windows around 1PM on non-auction dates. The yields are from secondary-market trades for on-the-run securities
for maturities m = 2, 5, 10, 30 years.
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Table 2: Demand Shocks and Measures of Demand

(1) (2) (3) (4) (5) (6) (7)
D

(2Y )
t D

(3Y )
t D

(5Y )
t D

(7Y )
t D

(10Y )
t D

(30Y )
t Pool Dt

Panel A: Total Bid-to-Cover Ratio
Bid-to-Cover -0.57*** -0.91** -2.50*** -3.06*** -3.05*** -4.69*** -1.68***

(0.15) (0.37) (0.51) (0.72) (0.49) (1.09) (0.22)
Obs. 256 134 233 106 186 132 1047
R2 0.06 0.11 0.20 0.09 0.26 0.20 0.12

Panel B: Expected and Unexpected Bid-to-Cover
Fitted -0.03 -0.09 0.27 1.72 -0.40 -2.58 -0.11

(0.14) (0.37) (0.62) (2.44) (0.51) (1.89) (0.16)
Residual -2.25*** -2.62*** -4.15*** -6.40*** -5.40*** -5.36*** -3.97***

(0.43) (0.34) (0.56) (1.17) (0.83) (1.71) (0.37)
Obs. 252 130 229 102 182 128 1023
R2 0.22 0.26 0.34 0.22 0.43 0.22 0.26

Panel C: Bid-to-Cover by Bidder Type
Indirect -4.72*** -3.01*** -8.82*** -13.22*** -8.38*** -15.79*** -8.42***

(0.62) (0.71) (1.24) (1.71) (0.90) (2.68) (0.84)
Direct -2.51** -3.24*** -2.75 -4.88** -3.66** -6.38*** -3.61***

(1.00) (0.97) (1.78) (2.42) (1.63) (1.91) (0.72)
Primary -0.42 -1.35** -2.97*** -0.09 -3.36*** -4.10** -2.22***

(0.52) (0.61) (0.77) (1.49) (0.68) (1.73) (0.42)
Obs. 159 117 168 102 146 111 803
R2 0.46 0.39 0.48 0.59 0.50 0.53 0.39

Panel D: Fraction Accepted by Bidder Type
Invest. Fund -6.61*** -6.33*** -9.78*** -15.10*** -9.62*** -17.83*** -10.49***

(1.37) (1.48) (1.94) (2.70) (1.65) (4.40) (1.17)
Foreign -6.89*** -3.90** -10.43*** -16.35*** -9.61*** -17.56*** -9.50***

(1.52) (1.60) (2.04) (2.56) (2.41) (5.15) (1.15)
Misc. -6.35** -6.87 -6.89*** 3.92 11.98 -13.00** -6.88***

(2.88) (7.58) (2.31) (6.53) (10.66) (6.44) (2.12)
Obs. 197 117 181 102 160 115 872
R2 0.27 0.22 0.30 0.49 0.31 0.41 0.24

Notes: Regressions of demand shocks D(m)
t on the bid-to-cover ratio and fractions accepted, total and broken up by bidder

type. Columns (1)-(6) restrict the sample to include only auctions of maturities m = 2, 3, 5, 7, 10, 30 years; column (7) pools
across all auctions. In Panels A, C, and D, four lags of the dependent variables are included but not reported; in Panel B,
the fitted values and residuals of an AR(4) are both used as dependent variables. Newey-West (9 lags) standard errors in
parentheses.
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Table 3: Asset Price Reactions to Demand Shocks

Asset type Estimate Std. Err. Obs. R2 Sample
(1) (2) (3) (4) (5)

Panel A: Corporate and Private Debt
LQD -3.93*** (0.15) 830 0.59 2002-2017
HYG -0.34 (0.30) 678 0.01 2007-2017
MBB -1.42*** (0.18) 662 0.34 2007-2017
VMBS -1.46*** (0.33) 371 0.13 2009-2017
Corp. Aaa† 0.94*** (0.10) 1040 0.14 1995-2017
Corp. Baa† 0.96*** (0.10) 1040 0.15 1995-2017
Corp. C† 0.23 (0.39) 973 0.00 1997-2017

Panel B: Equities
SPY -0.23 (0.52) 1033 0.00 1995-2017
IWM 0.18 (0.58) 876 0.00 2000-2017
SP500† 3.61 (2.74) 974 0.00 1995-2016
Russell 2000† 6.26* (3.25) 974 0.01 1995-2016

Panel C: Swaps, Commodities, and Spreads
GLD -1.16*** (0.36) 775 0.02 2004-2017
GSCI† -1.20 (2.74) 974 0.00 1995-2016
10Y Infl. Swap† 0.02 (0.08) 724 0.00 2004-2016
2Y Infl. Swap† 0.04 (0.17) 724 0.00 2004-2016
LIBOR-OIS† 0.03 (0.04) 737 0.00 2003-2016
Auto CDS† -0.60 (2.65) 733 0.00 2004-2016
Bank CDS† -0.23 (0.16) 733 0.01 2004-2016
VIX† -3.82 (3.37) 1040 0.00 1995-2017

Panel D: Federal Funds Futures
1-Month Ahead† 0.03 (0.02) 1040 0.00 1995-2017
2-Month/1-Month Slope† 0.00 (0.01) 1040 0.00 1995-2017

Notes: Regressions of asset price changes on demand shocks Dt (pooled across maturities). † denotes daily series; otherwise,
intraday changes are measured over the same window as auction demand shocks. Intraday changes are from ETFs that
track securities or indices: LQD (investment grade corporate debt); HYG (high yield corporate debt); MBB and VMBS
(mortgage indices); SPY (S&P 500); IWM (Russell 2000); GLD (gold bullion). Daily series: Aaa, Baa, C (Moody’s &
BoA corporate debt yield indices); S&P 500, Russell 2000 (equity indices); GSCI (S&P Total Commodity Index); 10- and
2-year inflation swaps; Auto and Bank credit default swap indices; LIBOR-OIS (3-month USD LIBOR-Overnight Index
Swap spread); VIX (implied volatility index); Federal funds futures (h-month ahead continuous contracts). Newey-West (9
lags) standard errors in parentheses. All regressions are estimated with OLS. We report very similar instrumental variable
estimates (using unexpected changes in the bid-to-cover ratio as instruments) in Appendix Table B1.
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Table 4: Localization Regression Results, Private Borrowing

(1) (2) (3) (4) (5) (6)
LQD HYG MBB VMBS SPY IWM

Panel A: Crisis Localization
D

(τ∗)
t -4.98*** -0.18 -3.41*** -2.83*** -0.03 2.85***

(0.58) (0.56) (0.41) (0.42) (1.22) (1.02)

Crisis × D
(τ∗)
t 0.30 0.19 1.80*** 4.51*** 0.97 -2.64*

(0.72) (0.69) (0.43) (1.58) (1.56) (1.42)
Obs. 794 661 647 376 941 811
R2 0.40 0.00 0.35 0.15 0.01 0.01
Sample 2002-2017 2007-2017 2007-2017 2009-2017 1995-2017 2001-2017

(1) (2) (3) (4) (5) (6)
BSV BIV BLV CSJ CIU CLY

Panel B: Crisis and Maturity Localization
D

(τ∗)
t -1.54*** -5.20*** -8.74*** -0.84*** -2.98*** -4.32***

(0.18) (0.37) (0.93) (0.17) (0.25) (1.24)

Long × D
(τ∗)
t -0.22 -0.88 -4.45* 0.23 -0.58 -4.37

(0.38) (1.46) (2.31) (0.28) (0.62) (3.37)

Crisis × D
(τ∗)
t 0.19 0.95 1.72 -0.15 0.79* -2.23

(0.25) (0.58) (1.36) (0.30) (0.46) (2.85)

Long × Crisis × D
(τ∗)
t 0.04 -2.72* -5.73* -0.11 -0.54 -21.22**

(0.51) (1.61) (3.15) (0.52) (0.81) (10.82)
Obs. 664 653 569 647 642 401
R2 0.36 0.62 0.38 0.14 0.28 0.19
Sample 2007-2017 2007-2017 2007-2017 2007-2017 2007-2017 2010-2017

Notes: The table reports results for the specification where we regress intraday changes in ETFs which proxy for various
private borrowing rates on our demand shocks. Panel A includes interactions with whether the auction took place in a
“non-crisis” or “crisis” period, while panel B additionally includes interactions with the maturity of the auction (using the
same definitions as in Figure 5). The ETFs used in Panel A are the same as in Table 3. In panel B, the Vanguard ETFs
“BSV,” “BIV,” and “BLV” track investment-grade bonds with short, intermediate, and long maturities (respectively). The
BlackRock iShares ETFs “CSJ,” “CIU,”, and “CLY” track investment-grade corporate bonds with short, intermediate, and
long maturities (respectively). Newey-West (9 lags) standard errors in parentheses.
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Table 5: Model Calibration and Targeted Moments

Panel A: Matched Moments
Target Moment Data Model
σ(y

(1)
t ) 1.993 1.978

σ(ỹ
(1)
t − y

(1)
t ) 0.542 0.549

σ(πt) 0.973 0.882
σ(xt) 1.992 1.996

σ(∆y
(1)
t ) 1.423 1.376

σ(∆(ỹ
(1)
t − y

(1)
t )) 0.615 0.617

σ(∆πt) 0.900 0.935
σ(∆xt) 2.190 2.137

σ(∆sy
(1)
t ) 0.272 0.399

σ(∆s(ỹ
(1)
t − y

(1)
t )) 0.258 0.218

σ(∆sπt) 0.232 0.362
σ(∆sxt) 0.499 0.745

ρ(ỹ
(1)
t − y

(1)
t , xt) −0.171 −0.158

ρ(y
(1)
t , πt) 0.549 0.615

ρ(πt, xt) 0.268 0.271
Panel B: Calibrated Parameters
Parameter Value (Crisis) Description
σi 2.567 Monetary Policy Vol.
κi 1.082 Monetary Policy Inertia
σd 1.116 Risky Payoff Vol.
κd 0.879 Risky Payoff Inertia
σz,π 2.039 Cost-Push Shock Vol.
κz,π 0.801 Cost-Push Shock Inertia
σz,x 1.749 Agg. Demand Shock Vol.
κz,x 0.253 Agg. Demand Shock Inertia
ϕπ 3.096 Inflation Taylor Coeff.
ψx 0.393 Risky Payoff Output Coeff.
δ 0.705 Nominal Rigidity
ρ 0.04 Discount Factor
ς−1 1.00 Intertemporal Elasticity
κβ 1.367 Habitat Demand Inertia
a · α0 0.008 (0.018) Habitat Elasticity Size
a · σβ · θ0 2.509 (5.123) Habitat Demand Size
a · ϕi,β 0.491 (4.620) Habitat Demand Short Rate Response
θs1 0.50 Short Treasury Factor Maturity Wgt.
θℓ1 0.20 Long Treasury Factor Maturity Wgt.
θ̃1 0.50 Risky Factor Maturity Wgt.
α1 0.10 Habitat Elasticity Maturity Wgt.
Panel C: QE/QT Parameters
θQE
1 0.35 QE1 Maturity Wgt.
κQE 0.20 QE1 Inertia
θQT
1 0.50 QT Maturity Wgt.
κQT,A 0.20 QT Inertia, Active Comp.
κQT,P 2.25 QT Inertia, Passive Comp.
γQT,A,P 1.75 QT Passive Comp. Response

Notes: Panel A presents the targeted moments which are not a function of maturity which we use to calibrate the model.
The targeted moments are volatility and correlations across short-term rates and macroeconomic variables. ∆ denotes a
1-year change, while ∆s denote a 1-month change. σ(·) denotes standard deviation (reported in percentage points), while
ρ(·, ·) denotes correlation. Panel B presents calibrated parameters used in our quantitative exercises. Panel C reports the
parameterization of our QE and QT shocks.
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Figure B1: Number and Size of Auctions per Year

Notes: the number (top panel) and dollar value (bottom panel) of note and bond Treasury auctions per year by term length.
The number of auctions temporarily fell in the late 1990s and early 2000s (during which time the Treasury ceased issuing
7- and 30-year securities). After the Great Recession, the number and size of auctions increased sharply. Since 2010, the
Treasury has held auctions every month for maturities m = 2, 3, 5, 7, 10, 30 years.
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Figure B3: Time Series of Surprise Movements in Treasury Yields

Notes: Plots of the times series of intraday yield shocks following the close of Treasury auctions. Shocks D(m)
t are plotted

separately for auctions of maturities m = 2, 3, 5, 7, 10, 30 years (in basis points). Gaps in the time series of 3-year, 7-year,
and 30-year shocks correspond to temporary halts of newly issued securities of these maturities; see Figure B1.
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Figure B6: Localization Regression P-Values

Notes: P-values testing equality of coefficients from Figure 5.
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Figure B7: Alternative Measures of Financial Crises

Notes: Alternative measures of financial crises from He et al. (2016) (top panel) and Romer and Romer (2017) (bottom
panel).
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Figure B8: Localization Robustness: Market-Based Crises

Notes: Estimates of regression equation (26), identifying financial crises as periods in which the aggregate capital ratio from
He et al. (2016) is low (≤ 0.055).
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Figure B9: Localization Robustness: Market-Based Crises (Continuous)

Notes: Alternative specification of regression equation (26), where the crisis measure is treated as continuous (as measured
by the aggregate capital ratio from He et al. (2016)). The measure is transformed to range from 0 to 1, and truncated so
that values below 0.04 are set to 1 while values above 0.075 are set to 0.
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Figure B10: Localization Robustness: Narrative-Based Crises

Notes: Estimates of regression equation (26), identifying financial crises as periods identified by Romer and Romer (2017).
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Figure B11: Localization Robustness: Narrative-Based Crises (Continu-
ous)

Notes: Alternative specification of regression equation (26), where the crisis measure is treated as continuous (as measured
by Romer and Romer (2017)). The measure is transformed to range from 0 to 1, and truncated so that values above 10 are
set to 1.
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Figure B12: Localization Robustness: Long/Short Auctions

Notes: Estimates of regression equation (26), where short-maturity auctions are those with maturities 7 years or below,
while long-maturity auctions are 10 years and above.
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Figure B13: Localization Robustness: τ ∗

Notes: Estimates of regression equation (26), where τ∗ = 6.
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Figure B14: Localization Robustness: No QE Event Weeks

Notes: Estimates of regression equation (26), dropping auctions that occurred during the weeks of QE announcements.
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Figure B15: Localization Robustness: Bid-to-Cover

Notes: Estimates of the alternative localization regression, using the bid-to-cover ratio as a proxy of structural demand
shocks (after controlling for its own four lags and flipping the sign). The estimate specification is given by: D

(τ)
t =

α(τ)+ν
(τ)
s I(mt = short)β̃t+ν

(τ)
ℓ I(mt = long)β̃t+ε

(τ)
t where β̃t is the residualized (“surprise”) bid-to-cover ratio following

an auction at date t (controlling for its own four lags, as in Table 2). We further flip the sign of the bid-to-cover ratio, in
order to make the estimates more comparable to our baseline specification. 2 standard error (Newey-West, 9 lags) confidence
intervals are included. Note that unlike specification (26), the estimates ν̂(τ)s , ν̂

(τ)
ℓ measure the absolute response of the

yield curve to the short and long demand factors (proxies), as opposed to the relative response. In the non-crisis subsample
estimates (Panel A), the response to both short- and long-maturity demand follows a similar hump-shaped pattern: the
response is increasing from short to intermediate maturities, peaking around τ = 5 to τ = 10 before declining (though
there is some evidence that long demand shocks have larger effects on very long-maturity yields). On the other hand, the
estimates from the crisis subsample (Panel B) exhibit significant differences across short and long estimates: the response
to short demand shocks remains hump-shaped, but peaks for short maturities before quickly declining. Conversely, the
response to long demand shocks increases almost without fail as the maturity increases, peaking at very long maturities.
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Figure B16: Fed Treasury Holdings: QE1 vs. QT

Notes: Changes in the Fed’s holdings of Treasuries following QE1 (Panel A) and QT (Panel B). Following QE1, the Fed
increased holdings of both intermediate- and long-term Treasuries. Thus far, the reduction in Treasury holdings following
QT has concentrated on intermediate maturities.
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Figure B18: QE Sensitivity Analysis: Inflation

Notes: Response of inflation to a QE shock as a function of various model parameters. This figure conducts the same
experiments as Figure 8, but plots the response of inflation πt rather than the output gap xt.
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Figure B19: Additional QE Sensitivity Analysis: Output

Notes: Response of output to a QE shock as a function of additional model parameters (as in Figure 8. Panel A: payoff
process dt response to the output gap (ψx). Panel B: payoff process dt response to inflation (ψπ). Panel C: payoff process
dt inertia (κd). Panel D: active and passive QE weights (λ).
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Figure B20: Additional QE Sensitivity Analysis: Inflation

Notes: Response of inflation to a QE shock as a function of additional model parameters. This figure conducts the same
experiments as Figure B19, but plots the response of inflation πt rather than the output gap xt.
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Table B1: Asset Price Reactions to Demand Shocks (IV Specification)

Asset type Estimate Std. Err. Obs. F-stat Sample
(1) (2) (3) (4) (5)

Panel A: Corporate and Private Debt
LQD -4.25*** (0.33) 826 92.2 2002-2017
HYG 0.09 (0.52) 674 91.2 2007-2017
MBB -1.33*** (0.23) 658 149.5 2007-2017
VMBS -1.30*** (0.38) 371 129.3 2009-2017
Corp. Aaa† 1.10*** (0.15) 1016 147.5 1995-2017
Corp. Baa† 1.14*** (0.14) 1016 147.5 1995-2017
Corp. C† 0.36 (0.47) 969 134.6 1997-2017

Panel B: Equities
SPY -1.04 (0.68) 1020 145.9 1995-2017
IWM -0.84 (0.94) 872 108.0 2000-2017
SP500† 1.65 (4.24) 950 142.0 1995-2016
Russell 2000† 5.45 (4.40) 950 142.0 1995-2016

Panel C: Swaps, Commodities, and Spreads
GLD -1.63*** (0.58) 771 67.1 2004-2017
GSCI† -5.80 (3.99) 950 142.0 1995-2016
10Y Infl. Swap† 0.04 (0.13) 720 67.1 2004-2016
2Y Infl. Swap† 0.09 (0.33) 720 67.1 2004-2016
LIBOR-OIS† 0.22 (0.15) 733 70.8 2003-2016
Auto CDS† 1.72 (2.66) 729 69.5 2004-2016
Bank CDS† -0.40 (0.26) 729 69.5 2004-2016
VIX† 5.35 (5.56) 1016 147.5 1995-2017

Panel D: Federal Funds Futures
1-Month Ahead† 0.01 (0.05) 1016 147.5 1995-2017
2-Month/1-Month Slope† 0.00 (0.02) 1016 147.5 1995-2017

Notes: The table repeats the regressions from Table 3, but instruments the demand shocks Dt with the surprise component
of the bid-to-cover ratio. First-stage F-statistics are reported in column (3). Newey-West (9 lags) standard errors in
parentheses.
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Appendix C Microfoundation Details

In a rational expectations equilibrium, the state variables yt and non-predetermined
(jump) variables xt evolve according to

dyt = h(yt) dt+ r(yt) dBt (C1)

xt ≡ x(yt) (C2)

where we have collected all Brownian terms into a vector Bt. The functions h(yt), r(yt)

are of course endogenous, but taken as given by optimizing agents (households, firms, and
arbitrageurs) in the model. The non-predetermined (jump) variables are a function of the
state x(yt), and this endogenous mapping is also taken as given by agents.

Given the vector of Brownian components Bt, we can decompose the dynamic pro-
cesses of the model into usual drift and diffusion terms (determined in equilibrium). We
use the following notation:

dP
(τ)
t

P
(τ)
t

= µ
(τ)
t dt+ σ

(τ)
t dBt (C3)

dP̃t
(τ)

P̃
(τ)
t

= µ̃
(τ)
t dt+ σ̃

(τ)
t dBt (C4)

dF t ≡ µFt dt+ σF
t dBt (C5)

Equations (C3) and (C4) give the dynamics of the realized returns for safe and risky
assets, respectively. From these expressions, we also can write the effective borrowing
rate faced by households as

∫ T

0

(
η(τ)

dP
(τ)
t

P
(τ)
t

+ η̃(τ)
dP̃

(τ)

t

P̃
(τ)
t

)
dτ =

∫ T

0

(
η(τ)µ

(τ)
t + η̃(τ)µ̃

(τ)
t

)
dτ dt

+

∫ T

0

(
η(τ)σ

(τ)
t + η̃(τ)σ̃

(τ)
t

)
dτ dBt

≡ r̂t dt+ σ̂t dBt (C6)

Finally, equation (C5) is the process for household transfers. All of the drift and diffusion
terms will be functions of the state variables yt in equilibrium, which we derive now.
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C.1 Aggregation and Market Clearing

In a symmetric equilibrium, Yj,t = Yt, Pj,t = Pt, Nj,t = Nt, πj,t = πt. Note also that the
price level is (locally) non-stochastic:

dP t = Ptπt dt

Because the price adjustment costs are paid to households, market clearing implies:

Yt = Ct = Nt (C7)

For instantaneous short-term bonds (with τ = 0) the total supply (S(0)
t ) is determined

endogenously such that the targeted policy rate it is the equilibrium outcome. We assume
a passive fiscal authority simply balances the budget each period, paying interest it on
short-term bond holdings and levying lump-sum taxes PtTt on households. Thus we have
PtTt = −S(0)

t it. Note that the fiscal authority therefore does not supply any long-term
bonds, so that S(τ)

t = 0 for τ > 0. Thus, in a zero-net supply equilibrium for τ > 0, asset
markets clear when arbitrageurs and habitat funds take opposite positions:

X
(τ)
t + Z

(τ)
t = 0, X̃

(τ)
t + Z̃

(τ)
t = 0

and for τ = 0, arbitrageurs and τ -maturity habitat funds holdings of short-term bonds
are given by:

Wt −
∫ T

0

X
(τ)
t dτ

W
(τ)
t − Z

(τ)
t + η(τ)At

W̃
(τ)
t − Z̃

(τ)
t + η̃(τ)At

Summing across arbitrageurs and habitat investors and imposing market clearing for τ > 0

gives the total demand for short-term bonds:

S
(0)
t = Wt +

∫ T

0

W
(τ)
t dτ +

∫ T

0

W̃
(τ)
t dτ + At

Thus, the fiscal authority’s per-period budget constraint is given by

PtTt = −
[
Wt +

∫ T

0

W
(τ)
t dτ +

∫ T

0

W̃
(τ)
t dτ + At

]
it

24



Nominal firm profits and price adjustment costs are given by:∫ 1

0

Πj,t dj +

∫ 1

0

Θ(πj,t) dj = Pt

∫ 1

0

Yj,t

(
1− wt −

θ

2
π2
j,t

)
dj +

∫ 1

0

Pj,tYj,t
θ

2
π2
j,t dj

= PtYt −WtYt

where wt = Wt

Pt
is the real wage.

Total transfers from the financial sector:

dW t +

∫ T

0

(
dW

(τ)
t + dW̃

(τ)

t

)
dτ =

[
Wt +

∫ T

0

(
dW

(τ)
t + dW̃

(τ)

t

)
dτ + At

]
it dt

− At

∫ T

0

(
η(τ)

dP
(τ)
t

P
(τ)
t

+ η̃(τ)
dP̃t

(τ)

P̃t
(τ)

)
dτ

Hence, total nominal transfers to the household sector are given by

dF t = [PtYt −WtYt] dt− At

∫ T

0

(
η(τ)

dP
(τ)
t

P
(τ)
t

+ η̃(τ)
dP̃t

(τ)

P̃t
(τ)

)
dτ

Combining with the household wealth dynamics, we obtain:

dAt = 0

dat = −atπt dt

Thus, if initial household wealth A0 = 0, then dAt = 0, dat = 0 =⇒ At = 0, at = 0

as well. In this case, we have σF
t = 0, which the household takes as given. Moreover, if

initial arbitrageur wealth W0 = 0 and habitat fund wealth W
(τ)
0 = 0, W̃

(τ)
0 = 0, then we

also have that the supply of short-term bonds S(0)
t = 0.

C.2 Optimality Conditions

Households: In addition to the aggregate state variables given by equation (C1), house-
hold wealth is also an idiosyncratic state variable. Defining real wealth at ≡ At

Pt
, the

household budget constraint (5) and Ito’s Lemma imply (dropping notational dependence
on time t for convenience)

da =

(
wN − C + a(r̂ − π) +

1

P
µF
)
dt+

(
aσ̂ + σF

)
dB

where the real wage w ≡ W
P

and we have defined the drift and diffusion terms from equa-
tions (C6) and (C6). From the household lifetime utility function and budget constraint
given by equations (4) and (5), we form the household HJB equation for the value function
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V (a;y) ≡ V :

ρV = max
C,N

u(C,N) + Va

(
wN − C + a(r̂ − π) +

1

P
µF
)
+ Vy⊤h(y) + SHH

SHH ≡ 1

2
Tr

[
aσ̂ + σF

r(y)

]⊤ [
Vaa Vay

Vay⊤ Vyy⊤

][
aσ̂ + σF

r(y)

]

where subscripts denote the gradient of a given function.
The optimality conditions are standard:

C−ς = Va (C8)

Nϕ = wVa (C9)

The envelope theorem combined with Ito’s Lemma imply that the co-state Va evolves
according to

dVa = (ρ+ π − r̂)Va dt+
(
Vaa(aσ̂ + σF ) + Vay⊤r(y)

)
dB

= (ρ+ π − r̂)Va dt+ Vay⊤r(y) dB (C10)

where the second line uses the conditions derived above that aσ̂ + σF = 0.

Firms: Define the relative price of firm j as P̃j =
Pj

P
. Then the firm problem can be

written as

maxE0

∫ ∞

0

e−ρtQY

(
P̃ 1−ϵ
j − wP̃−ϵ

j − θ

2
π2
j

)
dt , s.t. dP̃j = P̃j(πj − π) dt

where since households own firms, Q ≡ Va is the real stochastic discount factor of the
household.

We first solve the firm problem with no price adjustment costs. When θ = 0, we have
the standard solution

P n
j =

ϵ

ϵ− 1
Wn =⇒ wn =

ϵ− 1

ϵ
(C11)

where the superscript n denotes outcomes under flexible prices. Combined with the
household optimality conditions (C8) and (C9) as well as market clearing conditions
(C7), we find that output under flexible prices is given by

Y n =

(
ϵ− 1

ϵ

) 1
ς+ϕ

(C12)
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When θ > 0, we form the firm HJB equation for the value function U(P̃j;y) ≡ U :

ρU = max
π̃j

QY

(
P̃ 1−ϵ
j − wP̃−ϵ

j − θ

2
π2
j

)
+ UP̃j

P̃j(πj − π) + Uy⊤h(y) + SF

SF ≡ 1

2
Tr

[
0

r(y)

]⊤ [
UP̃j P̃j

UP̃jy

UP̃jy⊤ Uyy⊤

][
0

r(y)

]

The firm optimality conditions are

θQY πj = UP̃j
P̃j (C13)

The envelope theorem combined with Ito’s Lemma imply that the co-state UP̃j
evolves

according to

dUP̃j
=
(
(ρ− (πj − π))UP̃j

−QY
[
(1− ϵ) + ϵwP̃−1

j

]
P̃−ϵ
j

)
dt+ UP̃jy⊤r(y) dB

In a symmetric equilibrium, all firms make the same choices so that πj = π and P̃j = 1.
We therefore have

dUP̃j
= QY (ρθπ − [(1− ϵ) + ϵw]) dt+ UP̃jy⊤r(y) dB (C14)

Arbitrageurs: Using equations (C3) and (C4), we rewrite the arbitrageur budget con-
straint (8) as

dW =

[
Wi+

∫ T

0

(
X(τ)(µ(τ) − i) + X̃(τ)(µ̃(τ) − i)

)
dτ

]
dt

+

[∫ T

0

(
X(τ)σ(τ) + X̃(τ)σ̃(τ)

)
dτ

]
dB

The optimality conditions with respect to holdings X(τ ′), X̃(τ ′) are given by

∂E dW

∂X(τ ′)
=
a

2

∂V ar dW

∂X(τ ′)

∂E dW

∂X̃(τ ′)
=
a

2

∂V ar dW

∂X̃(τ ′)

Thus, the optimality conditions with respect to holdings X(τ ′) imply

∂E dW

∂X(τ ′)
=
[
µ(τ ′) − i

]
dt ,

∂V ar dW

∂X(τ ′)
= 2

∫ T

0

(
X(τ)σ(τ) + X̃(τ)σ̃(τ)

)
dτ
[
σ(τ ′)

]⊤
dt

=⇒ µ(τ ′) − i = a

∫ T

0

(
X(τ)σ(τ) + X̃(τ)σ̃(τ)

)
dτ
[
σ(τ ′)

]⊤
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and analogously the optimality conditions with respect to holdings X̃(τ ′) imply

µ̃(τ ′) − i = a

∫ T

0

(
X(τ)σ(τ) + X̃(τ)σ̃(τ)

)
dτ
[
σ̃(τ ′)

]⊤
C.3 Steady State

The deterministic steady state is found by setting the diffusion terms r(y) = 0. We focus
on the deterministic steady state with zero inflation and where output is at potential:
π̄ = 0, Ȳ = Ȳ n. Combining market clearing conditions, household optimality conditions
(C8) and (C9), and firm conditions (C11) we find

w̄ =
ϵ− 1

ϵ
, Ȳ = w̄

1
ς+ϕ

We further assume that the habitat demand in the steady state is zero:

Z(τ) = −α(τ) logP (τ) − β(τ) = 0

Z̃(τ) = −α̃(τ) log P̃ (τ) − β̃(τ) = 0

Hence, arbitrageur optimality conditions imply:

µ(τ ′) = r̄, µ̃(τ ′) = r̄

Thus from equation (C6), we have

¯̂r =

∫ T

0

(
η(τ)µ(τ ′) + η̃(τ)µ̃(τ ′)

)
dτ

= r̄

∫ T

0

(η(τ) + η̃(τ)) dτ = r̄

Hence we must have that the long-run central bank target is given by

r̄ = ρ

so that the dynamics of the household co-state (C10) are consistent with a zero output
gap, zero inflation deterministic steady.
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C.4 Log-linearization

From the household and firm optimality conditions (along with market clearing condi-
tions), we have that

c = y ≡ log Y = −ς−1 log Va, w = Y ς+ϕ, π =
1

θ
UP̃j

1

QY
,

1

QY
= V ς−1−1

a

Define the (log) output gap x ≡ log
(
Y
Y n

)
. We use the household co-state equation

(C10) to derive the dynamics of the output gap:

E dx = ς−1 ((r̂ − π − ρ) + Sc) dt

Sc ≡ 1

2

1

V 2
a

Tr
[
r⊤VayVay⊤r

]
We log-linearize around the deterministic steady state (y = ȳ derived above and no risk
r(y) = 0). Note that to a first-order, the term Sc ≈ 0. Hence we have

E dx ≈ ς−1 (r̂ − π − r̄) dt

Using the firm co-state dynamics (C14), we find the dynamics of inflation:

E dπ =

(
ρπ − (ϵ− 1)

θ

[
ex(ς+ϕ) − 1

]
+ (ς−1 − 1)π(ρ+ π − r̂) + Sπ

)
dt

Sπ ≡ 1

2
Tr

[
UP̃jy⊤r

Vay⊤r

]⊤  0 π(ς−1 − 1)U−1

P̃j
V −1
a

π(ς−1 − 1)U−1

P̃j
V −1
a π(ς−1 − 1)(ς−1 − 2)V −2

a

[UP̃jy⊤r

Vay⊤r

]

To a first-order, the term Sπ ≈ 0. Further, a first-order approximation gives

(ς−1 − 1)π(ρ+ π − r̂) ≈ 0

(ϵ− 1)

θ

[
ex(ς+ϕ) − 1

]
≈ (ϵ− 1)(ς + ϕ)

θ
x

since π̄ = 0 and ¯̂r = ρ. Then we have

E dπ ≈ (ρπ − δx) dt

where δ ≡ (ϵ−1)(ς+ϕ)
θ

.
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Appendix D Numerical and Localization Details

D.1 Numerical Solution: Laplace Transforms

Using the functional forms assumed in Section 5, we can solve the model by assuming
that T → ∞ and using Laplace transforms

The differential equations (20) are characterize the coefficient functions A(τ), Ã(τ).
Define the Laplace transform A(s) ≡ L{A(τ)} (s). Then equation (20) implies:

sA(s) +MA(s)− 1

s
ei = 0

=⇒ A(s) = [sI+M]−1

[
1

s
ei

]
using the fact that A(0) = 0. Similarly, we have

sÃ(s) + ed +MÃ(s)− 1

s
ei = 0

=⇒ Ã(s) = [sI+M]−1

[
1

s
ei − ed

]
using the fact that Ã(0) = −ed.

Note that the derivative with respect to the Laplace parameter s is given by

A′(s) = [sI+M]−1

[
− 1

s2
ei −A(s)

]
Ã′(s) = [sI+M]−1

[
− 1

s2
ei − Ã(s)

]
Additionally, define X(τ) ≡ A(τ)A(τ)⊤. Note that from equation (20) we can write

A′(τ)A(τ)⊤ +A(τ)A′(τ)⊤ +MX(τ) +X(τ)M⊤ − eiA(τ)⊤ −A(τ)e⊤i = 0

⇐⇒ X′(τ) +MX(τ) +X(τ)M⊤ − eiA(τ)⊤ −A(τ)e⊤i = 0

Define the Laplace transform X (s) ≡ L{X(τ)} (s). Then we have[
1

2
sI+M

]
X (s) + X (s)

[
1

2
sI+M

]⊤
= eiA(s)⊤ +A(s)e⊤i

since X(0) = 0. This is a Lyapunov equation. A sufficient condition for a unique solution
X (s) is if all the eigenvalues of

[
1
2
sI+M

]
have positive real parts.

Analogously, define X̃(τ) and X̃ (s), and the same steps as above imply[
1

2
sI+M

]
X̃ (s) + X̃ (s)

[
1

2
sI+M

]⊤
= eiÃ(s)⊤ + Ã(s)e⊤i + ede

⊤
d
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since X̃(0) = (−ed)(−e⊤d ) = ede
⊤
d .

With this notation, we have that∫ T

0

α(τ ;α0, α1)A(τ)A(τ)⊤ dτ = α0X (α1)∫ T

0

θ(τ ; θ0, θ1)A(τ)⊤ dτ = −θ0θ21A′(θ1)
⊤

and similarly for terms involving Ã(τ).
With a slight abuse of notation, define the following matrices:

X ≡ α0X (α1)

X̃ ≡ α̃0X̃ (α̃1)

Y ≡


...

−θ0kθ21kA′(θ1k)
⊤

...



Ỹ ≡


...

−θ̃0kθ̃21kÃ′(θ̃1k)
⊤

...


Using the parameterization of η(τ), η̃(τ) defined in equation (29), we define:

N ≡
∫ T

0

η(τ)A(τ) dτ = −η21A′(η1)

Ñ ≡
∫ T

0

η̃(τ)Ã(τ) dτ = −η̃21Ã′(η̃1)

V ≡ η0N + (1− η0)Ñ

All of these objects are implicitly determined by M. Hence we can write the equation
characterizing Â and M (equations (21) and (22)), as the solution of a root-finding
problem, as shown in the proof of Proposition 1:

f(Â;M; a) =

 ei +
(
Γ(Â)⊤ −M

)
V − Â

vec
{
Γ(Â)⊤ − a

{
Y − X + Ỹ − X̃

}
Σ−M

}
We utilize a continuation algorithm to solve the model numerically, which also serves

as an equilibrium selection device. First, for a0 ≡ 0 we have a known solution. Next,
given a solution Âs,Ms for a = as, we compute the solution Âs+1,Ms+1 for as+1 ≡ as+εs

using Âs,Ms as an initial value for a numerical root-finding algorithm. Finally, we stop
when aS ≡ ā. When the step size εs is small, this allows for a stable numerical approach
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to solving the model.22

In order to compute second moments in the model, note that the long-run variance-
covariance of the state V ar[yt] ≡ Σ∞ solves the following matrix equation

ΓΣ∞ +Σ∞Γ⊤ = Σ =⇒ vecΣ∞ = (Γ⊕ Γ)−1 vec(Σ)

where vec is the vectorization operator, and ⊕ denotes the Kronecker sum, defined for
any two squares matrices A,B with respective dimensions (a × a), (b × b) as A ⊕ B ≡
Ia⊗B +A⊗ Ib, and where ⊗ is the Kronecker product. Then the auto-covariance of the
state is given by

Cov[yt+s,yt] = exp(−Γs)Σ∞

and computing covariances of any model object is immediate due to the linearity in the
model. For instance, the standard deviation of 10-year yields is given by√

V ar
[
y
(10)
t

]
=

1

10

√
A(10)⊤Σ∞A(10)

D.2 Localization Proofs

Definitions and terminology: To compare the effects of demand factors j and k, we
compare their relative effects on bond prices. Suppose demand factor k is more concen-
trated on long-maturity bonds compared to demand factor j (θj1 > θk1). Consider the
effect of factor k on long-maturity bonds relative to its own effects on short-maturity
bonds. If this relative movement is the same as factor j, then we say that demand factors
have “global” effects on the yield curve. If instead the relative effect of factor k on long-
maturity bonds is larger than that of factor j (and similarly, the relative effect of factor
j on short-maturity bonds is larger than that of factor k), we say that demand factors
have “local” effects on the yield curve.

We formalize this logic as follows. Let

Bj(s, t) ≡
Aj(s)

Aj(t)
(D1)

This vector is the weighted average response of bond prices with Laplace frequency param-
eter s, relative to the weighted average response of bond prices with Laplace frequency
parameter t. The weights in the Laplace transform are given by e−sτ , so s > t im-
plies that Aj(s) has more weight on short-maturity bonds than Aj(t). Hence, if s > t and

22There are numerous ways to improve the efficiency of our numerical approach, including common
tools such as adaptive step sizes. However, in practice solving the model is efficient enough that setting
fixed, small step sizes and using off-the-shelf root-finding numerical packages worked well for the purposes
of stability of the solution algorithm.
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Bj(s, t) > Bk(s, t), then we have that the j-demand factor has a relatively larger impact on
short-maturity yields, compared to the k-demand factor. If s < t and Bj(s, t) > Bk(s, t),
then we have that the j-demand factor has a relatively larger impact on long-maturity
yields, compared to the k-demand factor.

Hence, demand factors have “global” effects if Bj(s, t) = Bk(s, t) for all demand factors
j, k and frequency weights s, t. Demand factors have “local” effects if Bj(s, t) > Bk(s, t)
for demand factors j, k such that θj1 > θk1 and frequency weights s > t.

Before stating and proving our results formally, we preview and discuss the results.
Proposition 2 shows that demand shocks have global effects when arbitrageurs approach
risk-neutrality (a → 0) or when demand factors are risk-free (σβ = 0). Proposition
2 further shows that the first-order effects of increasing risk aversion do not lead to a
localization of demand shocks. That is, in a neighborhood around a = 0, increasing risk
aversion does change the global nature of demand shocks.

Proposition 3 shows that the second-order effects of increasing risk aversion increase
the localization of demand shocks. That is, for large enough values of risk aversion
a ≫ 0, demand shocks become localized. Proposition 3 also shows that with infinite
risk aversion, demand shocks become fully localized. Note that this is a “discontinuous”
result; the model is no longer arbitrage-free.

Assumptions:

1. The “general equilibrium” effects of imperfect arbitrage are not too large near a = 0:
lima→0 d

n/dan (Γ) ≈ 0.

2. The state dynamics and correlation matrices are diagonal: Γ = diag
[
. . . γj,j . . .

]
and Σ = diag

[
. . . σ2

j,j . . .
]
.

3. Demand factors are identical besides the location of θ(τ)k. That is, θj0 = θk0 , γj,j =
γk,k, and σ2

j,j = σ2
k,k for j, k > 1.

4. There are no risky asset habitat demand traders: α̃(τ) = 0 and θ̃(τ) = 0.

Assumption 1 and 2 are for analytical tractability (and for instance hold trivially in partial
equilibrium models such as Vayanos and Vila (2021)). Note that Assumption 1 does not
imply that demand factors have no macroeconomic implications, but only assumes that
changes in risk aversion in a neighborhood around risk-neutrality do not lead to changes
in the dynamics of the model. Assumption 3 implies that besides the location in maturity
space, demand factors are symmetric. Assumption 4 is also for tractability, and allows us
to focus only on localization effects across maturities.

In order to simplify notation, define lima=0
dn

dan
(x) ≡ dn0x for any model object x.
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Assumption 1 implies that as a→ 0,

M → Γ⊤

d0M = {X − Y}Σ

dn0M = n
{
dn−1
0 X − dn−1

0 Y
}
Σ

and hence we can recursively solve for all derivatives with respect to a at a = 0.
With these assumptions, we have that as a→ 0, M is also diagonal and so is sI+M.

To simplify notation, define the vector and matrix equations

[g(s)]i ≡
1

s+ γi,i
, [G(s)]i,j ≡

1

s+ γi,i + γj,j
(D2)

and note that Assumption 3 implies that for all j, k,m, n > 1:

gj(s) = gk(s), Gj,k(s) = Gm,n(s)

Using this notation, we have that

lim
a→0

A(s) ≡ A0(s) =
1

s
· g(s) ◦ ei =

[
1

s(s+γ11)
0 . . . 0

]⊤
(D3)

lim
a→0

A′(s) ≡ A0′(s) = −g(s) ◦
[
1

s2
ei +A(s)

]
=
[
− 2s+γ11
s2(s+γ11)2

0 . . . 0
]⊤

(D4)

where ◦ denotes the Hadamard (element-wise) product. Further,

dn0A(s) = −g(s) ◦
n−1∑
k=0

(
n

k

)
dn−k0 Mdk0A(s) (D5)

dn0A′(s) = −g(s) ◦

(
dn0A(s) +

n−1∑
k=0

(
n

k

)
dn−k0 Mdk0A′(s)

)
(D6)

We also can characterize the limit of X (s):

lim
a→0

X (s) ≡ X 0(s) = G(s) ◦
(
eiA(s)⊤ +A(s)e⊤i

)
(D7)

and recursively the derivatives are found from:

dn0X (s) = G(s) ◦

(
eid

n
0A(s)⊤ + dn0A(s)e⊤i

n−1∑
k=0

(
dn−k0 Mdk0X (s) + dk0X (s)dn−k0 M⊤))

(D8)
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In particular, equations (D4) and (D7) imply:

lim
a→0

[X ]i,j =

2α0A0
1(α1)G1,1(α1) if i = j = 1

0 otherwise

lim
a→0

[Y ]i,j =

−θj0(θ
j
1)

2A0′
1 (s) if i > 1, j = 1

0 otherwise

=⇒ [d0M]i,j =


2σ2

1,1α0A0
1(α1)G1,1(α1) if i = j = 1

σ2
1,1θ

j
0(θ

j
1)

2A0′
1 (s) if i > 1, j = 1

0 otherwise

So d0M is zero everywhere except the first column, which we denote d0M1. Then

d0A(s) = −g(s) ◦ d0M1 · A0
1(s) (D9)

d0A′(s) = −g(s) ◦ d0M1 ◦
(
A0′

1 (s)− g(s) · A0
1(s)

)
(D10)

and

d2
0A(s) = −g(s) ◦

(
d2
0M1 · A0

1(s) + 2d0M1 · d0A0
1(s)

)
(D11)

d2
0A′(s) = −g(s) ◦

(
d2
0M1 · (A0′

1 (s)− g1(s)A0
1(s)) + 2d0M1 · (d0A0′

1 (s)− g1(s)d0A0
1(s))

)
(D12)

The following Lemma derives some useful algebraic properties of the model.

Lemma 3. For n ≥ 2, the ratio

dn0Aj(s)

d0Aj(s)
= n

dn−1
0 A1(s)

A0
1(s)

+
dn0Mj,1

d0Mj,1

+

∑n−2
k=1

(
n
k

) [
dn−k0 Mdk0A(s)

]
j

d0Mj,1A0
1(s)

(D13)

Proof. We have that
dn0Aj(s)

d0Aj(s)
=

[∑n−1
k=0

(
n
k

)
dn−k0 Mdk0A(s)

]
j

d0Mj,1A0
1(s)

Since d0M is zero everywhere besides the first column, we have that d0Mx(s) =

d0M1 · x1(s) for any vector function x(s). Hence

[d0Mdn0A(s)]j
d0Mj,1A0

1(s)
=

dn0A1(s)

A0
1(s)

which is independent of j.
Since A0(s) is zero everywhere besides the first element, we have that QA0(s) =
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Q1 · A0
1(s) for any matrix Q, where Q1 is the first column of Q. Hence

[dn0MA0(s)]j
d0Mj,1A0

1(s)
=

dn0Mj,1

Mj,1

which is independent of s.
In particular, equation (D13) implies that for n = 2, the ratio is additively separable

in the demand factor index j and the Laplace frequency weight s.

Proposition 2 (“Global” Demand Shocks). Demand shocks have “global” effects under
(near) risk-neutrality, or when demand is risk-free.

(a) For any demand factors j, k and Laplace frequency parameters s, t:

lim
a→0

(Bj(s, t)− Bk(s, t)) = 0

(b) Assume Σj,j = 0 for all demand factors j (but σ2
i > 0 and a > 0). For any demand

factors j, k and Laplace frequency parameters s, t, we have that:

Bj(s, t) = Bk(s, t)

(c) For any demand factors j, k and Laplace frequency parameters s, t, we have that:

lim
a→0

d

da
(Bj(s, t)− Bk(s, t)) = 0

Proof. (a) For j > 1, Aj(s) = 0 when a = 0, so apply L’Hopital’s rule to equation (D1):

lim
a→0

Bj(s, t) =
d0Aj(s)

d0Aj(t)
(D14)

Equation (D9) implies that the ratio:

d0Aj(s)

d0Aj(t)
=

gj(s)A0
1(s)

gj(t)A0
1(t)

and from Assumption 3, gj(s) = gk(s) for any j > 1, k > 1. Hence:

d0Aj(s)

d0Aj(t)
=

d0Ak(s)

d0Ak(t)

and the result follows.

A useful corollary of this result is that lima→0 Bj(s, t) > 0, since A1(s) > 0 and
g(s) > 0 (element-wise).
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(b) When demand is risk-free, Σ is zero everywhere except for the first element (equal to
σ2
i ). Hence, we have that:

a · {X − Y}Σ = aσ2
i ·
[
X1 − Y1 0 . . . 0

]
where X1,Y1 are the first columns of X and Y . Since Γ is diagonal, for any a > 0,
M ≡ Γ⊤ + a · {X − Y}Σ is zero everywhere except the first column and diagonal.
Therefore, the j > 1 element of A(s) is given by

Aj(s) =
1

s

[
(sI+M)−1]

j,1
=

aσ2
i (Yj,1 −Xj,1)

s(s+ γj,j)(s+ γ1,1 + aσ2
iX1,1)

=⇒ Bj(s, t) =
t(t+ γj,j)(t+ γ1,1 + aσ2

iX1,1)

s(s+ γj,j)(s+ γ1,1 + aσ2
iX1,1)

Then the result follows since γj,j = γk,k for j, k > 1 (by Assumption 3).

(c) Differentiating equation (D1) (and applying L‘Hopital’s rule and removing terms equal
to zero in the limit) gives

d0Bj(s, t) =
d2
0Aj(s)d0Aj(t)− d2

0Aj(t)d0Aj(s)

2d0Aj(t)
2

Equation (D14) and the corollary from the proof of (a) implies

lim
a→0

Bj(s, t) =
d0Aj(t)

d0Aj(s)
=

d0Ak(t)

d0Ak(s)
= lim

a→0
Bk(s, t) > 0

Hence:

d0Aj(t)

d0Aj(s)
d0Bj(s, t) =

1

2

(
d2
0Aj(s)

d0Aj(s)
− d2

0Aj(t)

d0Aj(t)

)
d0Aj(t)

d0Aj(s)
d0Bk(s, t) =

1

2

(
d2
0Ak(s)

d0Ak(s)
− d2

0Ak(t)

d0Ak(t)

)

From the Lemma 3, we have that

1

2

d2
0Aj(s)

d0Aj(s)
=

1

2

d2
0Mj,1

d0Mj,1

+
d0A1(s)

A0
1(s)

which is additively separable in terms which are a function of j and s. The result
follows.

Proposition 3 (“Localized” Demand Shocks). Demand shocks have “local” effects far
from risk-neutrality, and are fully localized under infinite risk aversion.
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(a) Suppose Σj,j > 0. For any demand factors j, k and Laplace frequency parameters s, t:

lim
a→0

sgn
d2

da2
(Bj(s, t)− Bk(s, t)) = sgn(s− t)(θj1 − θk1)

(b) When risk aversion a = ∞:

d logP
(τ)
t

dβkt
=
θk(τ)

α(τ)
,

d logP
(τ)
t

drt
= 0

Proof. (a) Differentiating equation (D1) (and applying L‘Hopital’s rule and removing
terms equal to zero in the limit) gives

d2
0Bj(s, t) =

1

6d0Aj(t)
3

(
3d2

0Aj(t)
2d0Aj(s)− 3d2

0Aj(s)d
2
0Aj(t)d0Aj(t)+

2d3
0Aj(s)d0Aj(t)

2 − 2d3
0Aj(t)d0Aj(t)d0Aj(s)

)
Using the results from Prop 1, we can scale and rewrite as:

d0Aj(t)

d0Aj(s)
d2
0Bj(s, t) =

1

3

(
d3
0Aj(s)

d0Aj(s)
− d3

0Aj(t)

d0Aj(t)

)
+

1

2

(
d2
0Aj(t)

d0Aj(t)

)(
d2
0Aj(t)

d0Aj(t)
− d2

0Aj(s)

d0Aj(s)

)
d0Aj(t)

d0Aj(s)
d2
0Bk(s, t) =

1

3

(
d3
0Ak(s)

d0Ak(s)
− d3

0Ak(t)

d0Ak(t)

)
+

1

2

(
d2
0Ak(t)

d0Ak(t)

)(
d2
0Aj(t)

d0Aj(t)
− d2

0Aj(s)

d0Aj(s)

)
and note that the final parenthetical term in each expression is identical (Prop 3).

Focusing on the third-order terms, from Lemma 3 we have that

1

3

d3
0Aj(s)

d0Aj(s)
=

d2
0A1(s)

A0
1(s)

+
1

3

d3
0Mj,1

Mj,1

+
[d2

0Md0A(s)]j
d0Mj,1A0

1(s)

The final term in the sum can be written

[d2
0Md0A(s)]j

d0Mj,1A0
1(s)

=
J∑

m=1

[
[d2

0M]j,m
d0Mj,1

]
·
[
d0Am(s)

A0
1(s)

]
≡ u⊤

j v(s)

and hence

1

3

(
d3
0Aj(s)

d0Aj(s)
− d3

0Aj(t)

d0Aj(t)

)
− 1

3

(
d3
0Ak(s)

d0Ak(s)
− d3

0Ak(t)

d0Ak(t)

)
= [uj − uk]

⊤ [v(s)− v(t)]
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Further, from Lemma 3,(
d2
0Aj(t)

d0Aj(t)
− d2

0Ak(t)

d0Ak(t)

)
=

d2
0Mj,1

d0Mj,1

− d2
0Mk,1

d0Mk,1

≡ [uj − uk]1

1

2

(
d2
0Aj(t)

d0Aj(t)
− d2

0Aj(s)

d0Aj(s)

)
=

d0A1(t)

A0
1(t)

− d0A1(s)

A0
1(s)

≡ − [v(s)− v(t)]1

Therefore, we have that

d0Aj(t)

d0Aj(s)

(
d2
0Bj(s, t)− d2

0Bk(s, t)
)
=

J∑
m=2

[uj − uk]m [v(s)− v(t)]m

Dealing with each vector separately: first, we have that

v(s) =
d0A(s)

A0
1(s)

= −g(s) ◦ d0M1

=⇒ v(s)− v(t) = −d0M1 ◦ (g(s)− g(t))

Next, the j,m element of d2
0M is

[d2
0M]j,m =

(
α0[d0X]j,m + θj0(θ

j
1)

2d0A′
m(θ

j
1)
)
σ2
m,m

(and recall that θ10 = 0). We have that

[d0X]j,m
dMj,1

=

−
(
gj(α1)A0

1(α1) + X 0
1,1(α1)

)
Sj,1(α1) if m = 1

0 otherwise

=
[d0X]k,m
dMk,1

where the second equality follows from Assumption 3.

Recall d0Mj,1 = σ2
i θ
j
0(θ

j
1)

2[d0A′(θj1)]1, hence we can write

−θ
j
0(θ

j
1)

2

dMj,1

d0A′(θj1) = −d0M1 ◦ g(θj1) ◦

(
1 + g(θj1)

θj1
1 + θj1g1(θ

j
1)

)
≡ −d0M1 ◦ h(θj1)

Therefore,

[uj − uk] = −d0M1 ◦
(
h(θj1)− h(θk1)

)
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which implies

[uj − uk] ◦ [v(s)− v(t)] = (d0M1)
2 ◦ (h(θj1)− h(θk1)) ◦ (g(s)− g(t))

Hence, the sign of any element of the above vector is determined by the (element-wise)
behavior of the functions g,h. From equation (D2), the function gm(s) is decreasing
in s for any element m. Further,

hm(x) =
3x2 + 2(γm,m + γ1,1) + γm,mγ1,1

(x+ γm,m)2(2x+ γ1,1)

=⇒ h′
m(x) = −2x(x+ γ1,1)(γ1,1 + γm,m + 3x)

(x+ γm,m)3(2x+ γ1,1)2

so hm(x) is also decreasing in x for any element m. Thus, we have that

sgn
[
(hm(θ

j
1)− hm(θ

k
1)) · (gm(s)− gm(t))

]
= sgn(θj1 − θk1) · (s− t)

and therefore the sum over the m ≥ 2 elements has the same sign. The result follows.

(b) If a = ∞, arbitrageurs invest their entire wealth in the risk-free rate and hence hold
no long-maturity bonds: X(τ)

t = 0 for all τ and t. Thus market clearing implies that
habitat investors also take zero positions: Z

(τ)
t = 0. Thus, the results follow from

differentiating the preferred habitat demand with respect to any demand factor βkt or
short rate it and setting to zero.
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Appendix E Data Appendix

This data appendix briefly describes the data sources and data series used in this paper.
This is intended to a brief guide to researchers who aim to extend or replicate our work
from raw data.

Treasury auctions

All of the information regarding the details of each treasury auction can be freely down-
loaded from treasurydirect.gov. Data on announcements and results are available starting
in 1979. Data on amounts accepted and tendered by bidder are available since 2003. Data
on allotment by investor class begins in 2000.

Intraday treasury data

We obtain intraday (tick-level) data on the secondary market for U.S. Treasuries through
GovPX, which is currently maintained by the Chicago Mercantile Exchange (CME).
These data are available for purchase directly from several vendors; for instance, CME
or Wharton Research Data Services (WRDS). We rely on an institutional subscription
to the GovPX database accessed through WRDS. We pull the WRDS databases titled
govpx_tick(year) for years 1995-2017. Our GovPX data covers the period 1995 through
2017. These data are available to researchers whose affiliated institutions subscribe to
the GovPX database via WRDS; otherwise, these data can be purchased from the CME’s
DataMine repository directly by creating an account on DataMine and contacting the
CME Member Services Department (membership@cmegroup.com).

A previous version of this paper used intraday data on Treasury futures to construct
auction demand shocks. This data is available for purchase directly from the Chicago
Mercantile Exchange (CME) through their DataMine repository.

Zero-coupon Treasury yields are from Gürkaynak et al. (2007). Zero-coupon corporate
bond yields are from the Treasury’s “HQM” data series, available from FRED.

Federal funds futures

We make use of federal funds futures, which are traded on the Chicago Mercantile Ex-
change (CME). This data can be purchased directly through CME on their website, or
as part of a subscription to a data repository that provides it. Refinitiv Datastream pro-
vides data on federal funds futures traded on the Chicago Mercantile Exchange since 1994.
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Asset prices and other financial indicators

Daily historical data on inflation swaps, commodity prices, spreads, and credit default
swaps are obtained through an institutional subscription to Refinitiv Datastream. Indi-
vidual researchers may also purchase access to Datastream. Intraday historical data on
equities (LQD, SPY, IWM, GLD in Table 4) are derived from the NYSE Trades and
Quotes (TAQ) database, which is available to individual or institutional subscribers in
WRDS. The coverage of these series varies, and is shown in the right-most column of
Table 4.

Macroeconomic aggregates

This paper also relies on data on U.S. industrial production and PCE inflation. We
download these series from the Federal Reserve Economic Database (FRED).

Debt volume data

Our discussion of the weighting function η relies on trading volume for Treasury securities
sourced from the Federal Reserve and the Securities Industry and Financial Markets
Association (SIFMA). The statistics on trading volume that we cite are freely available
online at the following URLs:
https://www.federalreserve.gov/releases/cp/volumestats.htm
https://www.sifma.org/resources/research/us-fixed-income-securities-statistics/
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